• Title/Summary/Keyword: nonlinear coefficient

Search Result 817, Processing Time 0.029 seconds

A Proposition of Site Coefficients and Site Classification System for Design Ground Motions at Inland of the Korean Peninsula (국내 내륙의 설계 지반 운동 결정을 위한 지반 증폭 계수 및 지반 분류 체계 제안)

  • Sun Chang-Guk;Chung Choong-Ki;Kim Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.101-115
    • /
    • 2005
  • For the site characterization at two inland areas, Gyeongju and Hongsung, which represent geomorphic and geologic characteristics of inland region in Korea, in-situ seismic tests containing borehole drilling investigations and resonant column tests were peformed and site-specific seismic response analyses were conducted using equivalent linear as well as nonlinear scheme. The soil deposits in Korea were shallower and stiffer than those in western US, from which the site coefficients and site classification system in Korea were derived. Most sites were categorized as site classes C and D based on the mean shear wave velocity $(V_s)$ of the upper 30 m $(V_s30)$, ranging between 250 and 650 m/s. According to the acceleration response spectra determined from the site response analyses, the site coefficients specified in the current Korean seismic design guide underestimate the ground motion in the short-period band and overestimate the ground motion in mid-period band. These differences can be explained by the differences in the bedrock depth and the soil stiffness profile between Korea and western US. The site coefficients, $F_a$ for short-period and $F_v$ for mid-period, were re-evaluated and the site classification system, in which sites C and D were subdivided according to $V_s20,\;V_s15,\;and\;V_s10$ together with the existing $V_s30$ was introduced accounting for the local geologic conditions at inland region of the Korean peninsula. The proposed site classification system in this paper is still rudimentary and requires modification.

Chaotic Disaggregation of Daily Rainfall Time Series (카오스를 이용한 일 강우자료의 시간적 분해)

  • Kyoung, Min-Soo;Sivakumar, Bellie;Kim, Hung-Soo;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.959-967
    • /
    • 2008
  • Disaggregation techniques are widely used to transform observed daily rainfall values into hourly ones, which serve as important inputs for flood forecasting purposes. However, an important limitation with most of the existing disaggregation techniques is that they treat the rainfall process as a realization of a stochastic process, thus raising questions on the lack of connection between the structure of the models on one hand and the underlying physics of the rainfall process on the other. The present study introduces a nonlinear deterministic (and specifically chaotic) framework to study the dynamic characteristics of rainfall distributions across different temporal scales (i.e. weights between scales), and thus the possibility of rainfall disaggregation. Rainfall data from the Seoul station (recorded by the Korea Meteorological Administration) are considered for the present investigation, and weights between only successively doubled resolutions (i.e., 24-hr to 12-hr, 12-hr to 6-hr, 6-hr to 3-hr) are analyzed. The correlation dimension method is employed to investigate the presence of chaotic behavior in the time series of weights, and a local approximation technique is employed for rainfall disaggregation. The results indicate the presence of chaotic behavior in the dynamics of weights between the successively doubled scales studied. The modeled (disaggregated) rainfall values are found to be in good agreement with the observed ones in their overall matching (e.g. correlation coefficient and low mean square error). While the general trend (rainfall amount and time of occurrence) is clearly captured, an underestimation of the maximum values are found.

Application of Yeongdong Illite to Remove Radiocesium for Severe Nuclear Accidents (원자력 중대 사고에 대비한 영동 지역 일라이트의 방사성 세슘 흡착 특성 평가)

  • Hwang, Jeonghwan;Choung, Sungwook;Park, Chan-Soo;Han, Jeong-Hee;Jeon, Sodam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.229-238
    • /
    • 2016
  • This study evaluated potential application of illite, which is produced at Yeongdong area in Korea, to remove radiocesium released to environmental system through severe nuclear accidents. The Yeongdong illite was formed by metamorphose of micaceous schist in hydrothermal condition, and composed of quartz, illite, and albite. Sorption distribution coefficient ($K_d$) of cesium by the Yeongdong illite was higher than the $K_d$ values for other clay minerals. It may be affected by preferential adsorption of cesium to Frayed Edge Sites (FES) on illite. Nonlinear isotherm models were suitable to describe the sorption processes for the Yeongdong illite. Its max. single layer capacity was $250,000{\mu}g\;kg^{-1}$ for cesium. Therefore, the Yeongdong illite could be an efficient and economic sorbent to prevent dispersion of radiocesium, and apply for remediation.

Design of Summer Very Short-term Precipitation Forecasting Pattern in Metropolitan Area Using Optimized RBFNNs (최적화된 다항식 방사형 기저함수 신경회로망을 이용한 수도권 여름철 초단기 강수예측 패턴 설계)

  • Kim, Hyun-Ki;Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.533-538
    • /
    • 2013
  • The damage caused by Recent frequently occurring locality torrential rains is increasing rapidly. In case of densely populated metropolitan area, casualties and property damage is a serious due to landslides and debris flows and floods. Therefore, the importance of predictions about the torrential is increasing. Precipitation characteristic of the bad weather in Korea is divided into typhoons and torrential rains. This seems to vary depending on the duration and area. Rainfall is difficult to predict because regional precipitation is large volatility and nonlinear. In this paper, Very short-term precipitation forecasting pattern model is implemented using KLAPS data used by Korea Meteorological Administration. we designed very short term precipitation forecasting pattern model using GA-based RBFNNs. the structural and parametric values such as the number of Inputs, polynomial type,number of fcm cluster, and fuzzification coefficient are optimized by GA optimization algorithm.

PERIOD CHANGE OF W UMa TYPE CONTACT BINARY AB And (W UMa형 접촉쌍성 AB And의 주기변화)

  • Jin, Ho;Han, Won-Yong;Kim, Chun-Hwey;Lee, Jae-Woo;Lee, Woo-Baik
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.242-250
    • /
    • 1997
  • The CCD photometric observations of W UMa-type eclipsing binary AB And were made from September 1994 to October 1996. New four primary minimum times were obtained from these observations. The analysis of times of minimum light for AB And confirms other previous studies that the orbital period of AB And have been changing as a form of sinusoidal variation. In this paper, we calculated the new orbital elements with linear and nonlinear quadratic term, and the best fit equation is derived with the assumption that the period variation of AB And changes sinusoidal pattern. From the sinusoidal term of this orbital element, we calculate period variation as 92 years with amplitude of $0.^{d}059$. However this result considering only sinusoidal term, was not satisfied with our recent observations. Thus, by assuming another parabolic period variation with the sinusoidal pattern, we derived the best fit orbital elements. From the quadratic coefficient of this orbital elements, we calculated the secular variation of 0.73 seconds, and from the sinusoidal term, the period variation turned out to be 62.9 years with amplitude of $0.^{d}024$. If we assume only the sinusoidal period variation of AB And, the period has to be decreased within 10 years. However if we consider quadratic term with the sinusoidal period variation of the light elements, the period is expected to be increased. Therefore long-term observations of this binary system are required to confirm this issue.

  • PDF

FE-Simulation and Measurement of the Residual Stress in Al6061 During T6 Heat Treatment (Al6061-T6 열처리 잔류응력의 유한요소해석 및 측정)

  • Ko, Dae-Hoon;Kim, Tae-Jung;Lim, Hak-Jin;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.717-722
    • /
    • 2011
  • The purpose of this study is to predict the residual stress in Al6061 during T6 heat treatment. In this study, the variable residual stress in case of the solid solution($530^{\circ}C$, 2h) and artificial ageing($175^{\circ}C$, 9h) of Al6061 subjected to T6 heat treatment is determined at different ageing times. A heat treatment experiment is conducted to determine the heat transfer coefficient, on the basis of which the residual stress during the T6 heat treatment is predicted. In order to take into account the relaxation of residual stress during artificial ageing, a Zener-Wert-Avrami function is used and elasto-plastic nonlinear analysis is conducted through FE-simulation. Further, the residual stress is measured by using the X-ray diffraction(XRD) method, and the result is compared with the result from the FE-simulation. It is found that the residual stress predicted form the FE-simulation is in good agreement with the residual stress measured by using the XRD method.

Development of an Efficient Method to Evaluate the Optimal Location of Groundwater Dam (최적의 지하댐 입지 선정을 위한 효율적 평가 방법 개발)

  • Jeong, Jina;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.245-258
    • /
    • 2020
  • In this study, a data-driven response surface method using the results acquired from the numerical simulation is developed to evaluate the potential storage capacity of groundwater due to the construction of a groundwater dam. The hydraulic conductivities of alluvium and basement rock, depth and slope of the channel are considered as the natural conditions of the location for groundwater dam construction. In particular, the probability models of the hydraulic conductivities and the various types of geometry of the channel are considered to ensure the reliability of the numerical simulation and the generality of the developed estimation model. As the results of multiple simulations, it can be seen that the hydraulic conductivity of basement rock and the depth of the channel greatly influence to the groundwater storage capacity. In contrast, the slope of the channel along the groundwater flow direction shows a relatively lower impact on the storage capacity. Based on the considered natural conditions and the corresponding numerical simulation results, the storage capacity estimation model is developed applying an artificial neural network as the nonlinear regression model for training. The developed estimation model shows a high correlation coefficient (>0.9) between the simulated and the estimated storage amount. This result indicates the superiority of the developed model in evaluating the storage capacity of the potential location for groundwater dam construction without the numerical simulation. Therefore, a more objective and efficient comparison for the storage capacity between the different potential locations can be possibly made based on the developed estimation model. In line with this, the proposed method can be an effective tool to assess the optimal location of groundwater dam construction across Korea.

An Evaluation of Progressive Collapse Resisting Capacity of RC Structure Using Static and Dynamic Analysis (정적 및 동적 해석을 이용한 철근콘크리트 건물의 연쇄붕괴 저항성능 평가)

  • Seo, Dae-Won;Kim, Hae-Jin;Shin, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.238-245
    • /
    • 2010
  • Progressive collapse is defined as a collapse caused by sectional destruction of a structural member which links to other surrounding structures. Currently the design guidelines for the prevention of progressive collapse is not available in Korea. So, structural engineers have a difficulty in evaluating progressive collapse. In this study, the static and dynamic analysis to evaluate the methods and procedures are conducted using commercial analysis program for RC moment resisting frames. According to the study, DCR value of RC moment resisting frame system based on code in Korea is over 2 and it shows that it can't provide alternate load paths due to the progressive collapse. And additional reinforcement should be considered for the progressive collapse resistance. As a result of vertical deflection and DCR value of linear static analysis and linear dynamic analysis, the results of dynamic analysis were underestimated more than the result of static analysis. Thus, the dynamic coefficient value of 2 provides conservative estimation.

Prediction of Crack Pattern of Continuously Reinforced Concrete Track Induced by Temperature Change and Shrinkage of Concrete (온도 변화와 콘크리트 수축에 의한 연속철근 콘크리트궤도의 균열 발생 패턴 예측)

  • Bae, Sung Geun;Choi, Seongcheol;Jang, Seung Yup;Cha, Soo Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.270-280
    • /
    • 2014
  • In this study, to examine the causes of cracks in continuously reinforced concrete tracks (CRCTs) and the main factors affecting cracking, a field survey on the status of cracks and crack patterns in the Gyeong-bu high speed line was conducted, and the crack patterns of CRCT due to the temperature difference between the top of the slab (TCL) and the bottom of the subbase (HSB) and the drying shrinkage of concrete were predicted by a nonlinear finite element model considering the structure of CRCT. The results of the numerical analysis show that cracks will be developed at the interface between the sleeper and the TCL, and under the sleeper due to the temperature difference and concrete shrinkage. This corresponds well to the crack locations found in the field. Also, it is found that the most significant factors are the coefficient of thermal expansion with respect to the temperature difference, and the drying shrinkage strain with respect to shrinkage. According to the results, the reinforcement ratio should be carefully determined considering the structures of CRCT because the crack spacing is not always proportional to the reinforcement ratio due to the sleepers embedded in the TCL.

Evalution for Joints of Coastal Environments Blocks (Coastal Environments 블록 적용을 위한 연결부 강도평가)

  • Kim, Chun-Ho;Kim, Kwang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.176-182
    • /
    • 2009
  • Other damage can occur due to the preexisting dull structure and installation of nonenvironmental-friendly concrete structure, lack of function for preventing coastal erosion. Increase of personal income and fast spread of the concept of waterfront casued the initiation of many project to improve aging coastal ports. However, none of environment-friendly structure has been developed and pre-existing solid block, igloo block, tunnel block are used commonly. In piers and lighter's wharf where the ships are mooring, resonance by the generation of a reflected wave caused by penetration wave in the port and port wave increases wave heights in the port and makes difficult to maintain the temperature, causes problems in mooring ships and cargo-working, and eventually increase the occurance of damages of the small ships by the collision. Therefore, development of new types of blcok is necessary. To apply Coastal Environments block developed for this reason, it requires allowable bearing capacity evaluation of shear key. For this study, we made test specimen for connecting part of C.E. Block, and conducted friction test of boundary surface. Data obtained by the experiment was analyzed by finite element analysis and assessed the coefficient of friction between C.E. Block and boundary surface.