• Title/Summary/Keyword: nonlinear axial vibrations

Search Result 18, Processing Time 0.022 seconds

Vibrations and stress analysis of perforated functionally graded rotating beams

  • Alaa A. Abdelrahman;Hanaa E. Abd-El-Mottaleb;Mohamed G. Elblassy;Eman A. Elshamy
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.667-684
    • /
    • 2023
  • In the context of finite element method, a computational simulation is presented to study and analyze the dynamic behavior of regularly perforated functionally graded rotating beam for the first time. To investigate the effect of perforation configurations, both regular circular and squared perforation patterns are studied. To explore impacts of graded material distributions, both axial and transverse gradation profiles are considered. The material characteristics of graded materials are assumed to be smoothly and continuously varied through the axial or the thickness direction according the nonlinear power gradation law. A computational finite elements procedure is presented. The accuracy of the numerical procedure is verified and compared. Resonant frequencies, axial displacements as well as internal stress distributions throughout the perforated graded rotating cantilever beam are studied. Effects of material distributions, perforation patterns, as well as the rotating beam speed are investigated. Obtained results proved that the graded material distribution has remarkable effects on the dynamic performance. Additionally, circular perforation pattern produces more softening effect compared with squared perforation configuration thus larger values of axial displacements and maximum principal stresses are detected. Moreover, squared perforation provides smaller values of nondimensional frequency parameters at most of vibration modes compared with circular pattern.

Non-linear vibration and stability analysis of an axially moving rotor in sub-critical transporting speed range

  • Ghayesh, Mergen H.;Ghazavi, Mohammad R.;Khadem, Siamak E.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.507-523
    • /
    • 2010
  • Parametric and forced non-linear vibrations of an axially moving rotor both in non-resonance and near-resonance cases have been investigated analytically in this paper. The axial speed is assumed to involve a mean value along with small harmonic fluctuations. Hamilton's principle is employed for this gyroscopic system to derive three coupled non-linear equations of motion. Longitudinal inertia is neglected under the quasi-static stretch assumption and two integro-partial-differential equations are obtained. With introducing a complex variable, the equations of motion is presented in the form of a single, complex equation. The method of multiple scales is applied directly to the resulting equation and the approximate closed-form solution is obtained. Stability boundaries for the steady-state response are formulated and the frequency-response curves are drawn. A number of case studies are considered and the numerical simulations are presented to highlight the effects of system parameters on the linear and nonlinear natural frequencies, mode shapes, limit cycles and the frequency-response curves of the system.

Plastic hinge length of RC columns considering soil-structure interaction

  • Mortezaei, Alireza
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.679-702
    • /
    • 2013
  • During an earthquake, soils filter and send out the shaking to the building and simultaneously it has the role of bearing the building vibrations and transmitting them back to the ground. In other words, the ground and the building interact with each other. Hence, soil-structure interaction (SSI) is a key parameter that affects the performance of buildings during the earthquakes and is worth to be taken into consideration. Columns are one of the most crucial elements in RC buildings that play an important role in stability of the building and must be able to dissipate energy under seismic loads. Recent earthquakes showed that formation of plastic hinges in columns is still possible as a result of strong ground motion, despite the application of strong column-weak beam concept, as recommended by various design codes. Energy is dissipated through the plastic deformation of specific zones at the end of a member without affecting the rest of the structure. The formation of a plastic hinge in an RC column in regions that experience inelastic actions depends on the column details as well as soil-structure interaction (SSI). In this paper, 854 different scenarios have been analyzed by inelastic time-history analyses to predict the nonlinear behavior of RC columns considering soil-structure interaction (SSI). The effects of axial load, height over depth ratio, main period of soil and structure as well as different characteristics of earthquakes, are evaluated analytically by finite element methods and the results are compared with corresponding experimental data. Findings from this study provide a simple expression to estimate plastic hinge length of RC columns including soil-structure interaction.

Estimating peak wind load effects in guyed masts

  • Sparling, B.F.;Wegner, L.D.
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.347-366
    • /
    • 2007
  • Guyed masts subjected to turbulent winds exhibit complex vibrations featuring many vibration modes, each of which contributes to various structural responses in differing degrees. This dynamic behaviour is further complicated by nonlinear guy cable properties. While previous studies have indicated that conventional frequency domain methods can reliably reproduce load effects within the mast, the system linearization required to perform such an analysis makes it difficult to relate these results directly to corresponding guy forces. As a result, the estimation of peak load effects arising jointly from the structural action of the mast and guys, such as leg loads produced as a result of guy reactions and mast bending moments, is uncertain. A numerical study was therefore undertaken to study peak load effects in a 295 m tall guyed mast acted on by simulated turbulent wind. Responses calculated explicitly from nonlinear time domain finite element analyses were compared with approximate methods in the frequency domain for estimating peak values of selected responses, including guy tension, mast axial loads and mast leg loads. It was found that these peak dynamic load effects could be accurately estimated from frequency domain analysis results by employing simple, slightly conservative assumptions regarding the correlation of related effects.

Free vibration responses of nonlinear FG-CNT distribution in a polymer matrix

  • Zerrouki, Rachid;Hamidi, Ahmed;Tlidji, Youcef;Karas, Abdelkader;Zidour, Mohamed;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • The object of this paper is to investigate the free vibration behavior under the effect of carbon nanotube distribution in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) by using higher-order shear deformation theories. In this work, we present a novel distribution method for carbon nanotubes in the polymer matrix by using a new exponential power law distribution of carbon nanotube volume fraction. It is assumed that the SWCNTs are aligned along the beam axial direction and the distribution of the SWCNTs may vary through the thickness of the beam with different patterns of reinforcement. The rule of mixtures is used in order to obtain material properties of the CNTRC beams. Hamilton's principle is used in deriving the equations of motion. The validity of the free Vibration results is examined by comparing them with those of the known data in the literature. The results that obtained indicate that the carbon nanotube volume fraction distribution play a very important role on the free vibrations characteristics of the CNTRC beam.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

Vibration Analysis of Transformer DC bias Caused by HVDC based on EMD Reconstruction

  • Liu, Xingmou;Yang, Yongming;Huang, Yichen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.781-789
    • /
    • 2018
  • This paper proposes a new approach utilizing empirical mode decomposition (EMD) reconstruction to process vibration signals of a transformer under DC bias caused by high voltage direction transmission (HVDC), which is the potential cause of additional vibration and noise from transformer. Firstly, the Calculation Method is presented and a 3D model of transformer is simulated to analyze transformer deformation characteristic and the result indicate the main vibration is produced along axial direction of three core limbs. Vibration test system has been built and test points on the core and shell of transformer have been measured. Then, the signal reconstruction method for transformer vibration based on EMD is proposed. Through the EMD decomposition, the corrupted noise can be selectively reconstructed by the certain frequency IMFs and better vibration signals of transformer have been obtained. After EMD reconstruction, the vibrations are compared between transformer in normal work and with DC bias. When DC bias occurs, odd harmonics, vibration of core and shell, behave as a nonlinear increase and the even harmonics keep unchanged with DC current. Experiment results are provided to collaborate our theoretical analysis and to illustrate the effectiveness of the proposed EMD method.

Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods (탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석)

  • Suh, Yeong Sung;Lim, Geun Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.622-628
    • /
    • 2016
  • As the suction pad-supporting bike carrier attached to a car may be subject to an excessive dynamic load due to random vibrations and centrifugal forces during driving, its structural safety is of great concern. To examine this, the finite-element method with a fluid-structure interaction should be used because the pressure on the pad bottom is changed in real time according to the fluctuations of the force or the moment applied on the pad. This method, however, has high computing costs in terms of modeling efforts and software expense. Moreover, the accuracy of computation is not easily guaranteed. Therefore, a new method combining the experiment and computation is proposed in this paper: the bottom pressure and contact area of the pad under varying loads was measured in real time and the acquired data are then used in the nonlinear elastic finite-element calculations. The computational and experimental results obtained with the product under development showed that the safety margin of the pad under the axial loading is relatively sufficient, whereas with an excessive rotational loading, the pad is vulnerable to separation or a local surface damage; hence, the safety margin may not be secured. The predicted contact behavior under the variation of the magnitude and type of the loading were in good agreement with the one from the experiment. The proposed analysis method in this study could be used in the design of similar vacuum pad systems.