• Title/Summary/Keyword: nonlinear Finite Elements

Search Result 401, Processing Time 0.028 seconds

A Nonlinear Analysis of Half Plane Problems Using Coupling of Finite Elements and Boundary Elements (유한요소와 경계요소의 조합에 의한 반무한 영역 문제의 비선형해석)

  • 김문겸;임윤묵
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-64
    • /
    • 1989
  • A procedure which may be useful in dealing with problems of half plane is considered. Boundary elements are combined with nonlinear finite elements to facilitate their merits. Boundary elements for semi-infinite region are composed using the Melan's solution for half plane. Nonlinear finite elements are used to model irregularity or nonhomogeneity of elasto-plastic materials, which is usual in underground structures. In order to verify the procedure, a shallow tunnel under internal pressure is analysed using the nonlinear finite element method and combined method. It is shown that the developed procedure is accurate enough compared with other method.

  • PDF

Nonlinear finite element formulation for sliding cable structures considering frictional, thermal and pulley-dimension effects

  • Yang, Menggang;Chen, Shizai;Hu, Shangtao
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.205-224
    • /
    • 2022
  • This paper presents a refined finite element formulation for nonlinear static and dynamic analysis of sliding cable structures, overcoming the limitation of the existing approaches that neglect or approximate the friction, pulley dimension, temperature and geometric nonlinearity. A new family of elements with the same framework is proposed, consisting of the cable-pulley (CP) elements considering sliding friction, and the non-sliding cable-pulley (NSCP) elements considering static friction. Thereafter, the complete procedure of static and dynamic analysis using the proposed elements is developed, with the capability of accurately dealing with the friction at each pulley. Several examples are utilized to verify the validity and accuracy of the proposed elements and analysis strategy, and investigate the frictional, thermal and pulley-dimension effects as well. The numerical examples show that the results obtained in this work are in good accordance with the existing works when using the same approximations of friction, pulley dimension and temperature. By avoiding the approximations, the proposed formulation can be effectively adopted in predicting the more precise nonlinear responses of sliding cable structures.

3-Dimensional Nonlinear Analysis of Low Velocity Impact On Composite Plates (복합재료 평판의 비선형 3차원 저속 충격 해석)

  • 김승조;지국현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.38-42
    • /
    • 2000
  • In this study, the low velocity impact behavior of the composite laminates has been described by using 3 dimensional nonlinear finite elements. To describe the geometric nonlinearity due to large deformation, the dynamic contact problem is formulated using the exterior penalty finite element method on the base of Total Lagrangian formulation. The incremental decomposition is introduced, and the converged solution is attained by Newton-Raphson Method. The Newmark's constant-acceleration time integration algorithm is used. To make verification of the finite element program developed in this study, the solution of the nonlinear static problem with occurrence of large deformation is compared with ABAQUS, and the solution of the static contact problem with indentation is compared with the Hertz solution. And, the solution of low velocity impact problem for isotropic material is verificated by comparison with that of LS-DYNA3D. Finally the contact force of impact response from the nonlinear analysis are compared with those from the linear analysis.

  • PDF

Nonlinear numerical simulation of RC columns subjected to cyclic oriented lateral force and axial loading

  • Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.745-765
    • /
    • 2015
  • A nonlinear Finite Element (FE) algorithm is proposed to analyze the Reinforced Concrete (RC) columns subjected to Cyclic Loading (CL), Cyclic Oriented Lateral Force and Axial Loading (COLFAL), Monotonic Loading (ML) or Oriented Pushover Force and Axial Loading (OPFAL) in any direction. In the proposed algorithm, the following parameters are considered: uniaxial behavior of concrete and steel elements, the pseudo-plastic hinge produced in the critical sections, and global behavior of RC columns. In the proposed numerical simulation, the column is discretized into two Macro-Elements (ME) located between the pseudo-plastic hinges at critical sections and the inflection point. The critical sections are discretized into Fixed Rectangular Finite Elements (FRFE) in general cases of CL, COLFAL or ML and are discretized into Variable Oblique Finite Elements (VOFE) in the particular cases of ML or OPFAL. For pushover particular case, a fairly fast converging and properly accurate nonlinear simulation method is proposed to assess the behavior of RC columns. The proposed algorithm has been validated by the results of tests carried out on full-scale RC columns.

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

THE SENSITIVITY OF STRUCTURAL RESPONSE USING FINITE ELEMENTS IN TIME

  • Park, Sungho;Kim, Seung-Jo
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.66-80
    • /
    • 2002
  • The bilinear formulation proposed earlier by Peters and Izadpanah to develop finite elements in time to solve undamped linear systems, Is extended (and found to be readily amenable) to develop time finite elements to obtain transient responses of both linear and nonlinear, and damped and undamped systems. The formulation Is used in the h-, p- and hp-versions. The resulting linear and nonlinear algebraic equations are differentiated to obtain the first- and second-order sensitivities of the transient response with respect to various system parameters. The present developments were tested on a series of linear and nonlinear examples and were found to yield, when compared with results obtained using other methods, excellent results for both the transient response and Its sensitivity to system parameters. Mostly. the results were obtained using the Legendre polynomials as basis functions, though. in some cases other orthogonal polynomials namely. the Hermite. the Chebyshev, and integrated Legendre polynomials were also employed (but to no great advantage). A key advantage of the time finite element method, and the one often overlooked in its past applications, is the ease In which the sensitivity of the transient response with respect to various system parameters can be obtained. The results of sensitivity analysis can be used for approximate schemes for efficient solution of design optimization problems. Also. the results can be applied to gradient-based parameter identification schemes.

  • PDF

Formulations of Linear and Nonlinear Finite Element for Dynamic Flexible Beam (유연보의 동역학 해석에 대한 선형 및 비선형 유한요소 정식화)

  • Yun Seong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.113-121
    • /
    • 2006
  • This paper established the dynamic model of a flexible Timoshenko beam capable of geometrical nonlinearities subject to large overall motions by using the finite element method. Equations of motion are derived by using Hamilton principle and are formulated in terms of finite elements using CO elements in which the nonlinear constraint equations are adjoined to the system using Lagrange multipliers. In the final formulation are presented Coriolis and Gyroscopic forces as well as linear and nonlinear stiffnesses effects for the forthcoming numerical computation.

Enhanced finite element modeling for geometric non-linear analysis of cable-supported structures

  • Song, Myung-Kwan;Kim, Sun-Hoon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.575-597
    • /
    • 2006
  • Enhanced three-dimensional finite elements for geometrically nonlinear analysis of cable-supported structures are presented. The cable element, derived by using the concept of an equivalent modulus of elasticity and assuming the deflection curve of a cable as catenary function, is proposed to model the cables. The stability functions for a frame member are modified to obtain a numerically stable solution. Various numerical examples are solved to illustrate the versatility and efficiency of the proposed finite element model. It is shown that the finite elements proposed in this study can be very useful for geometrically nonlinear analysis as well as free vibration analysis of three-dimensional cable-supported structures.

Nonlinear System Parameter Identification Using Finite Element Model (유한요소모델을 이용한 비선형 시스템의 매개변수 규명)

  • Kim, Won-Jin;Lee, Bu-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1593-1600
    • /
    • 2000
  • A method based on frequency domain approaches is presented for the nonlinear parameters identification of structure having nonlinear joints. The finite element model of linear substructure is us ed to calculating its frequency response functions needed in parameter identification process. This method is easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of finite element model. Since this method is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude but also selecting excitation frequencies. The validity of this method is tested numerically and experimentally with a cantilever beam having the nonlinear element. It was verified through examples that the method is useful to identify the nonlinear parameters of a structure having arbitary nonlinear boundaries.

Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks

  • Figueira, Diogo;Sousa, Carlos;Neves, Afonso Serra
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.593-605
    • /
    • 2018
  • A nonlinear finite element modeling approach is developed to assess the behavior of a dowel bar embedded on a single concrete block substrate, subjected to monotonic loading. In this approach, a discrete representation of the steel reinforcing bar is considered, using beam finite elements with nonlinear material behavior. The bar is connected to the concrete embedment through nonlinear Winkler spring elements. This modeling approach can only be used if a new constitutive model is developed for the spring elements, to simulate the deformability and strength of the concrete substrate. To define this constitutive model, an extensive literature review was conducted, as well as 3 experimental tests, in order to select the experimental data which can be used in the calibration of the model. Based on this data, an empirical model was established to predict the global dowel response, for a wide range of bar diameters and concrete strengths. This empirical model provided the information needed for calibration of the nonlinear Winkler spring model, valid for dowel displacements up to 4 mm. This new constitutive model is composed by 5 stages, in order to reproduce the concrete substrate response.