• 제목/요약/키워드: nonlinear FEM

검색결과 439건 처리시간 0.026초

비선형 FEM 해석을 이용한 기존 강재 주탑기부 설계의 개선방안 연구 (A Study on the Improvement of the Steel Pylon Base Design Using Nonlinear FEM Analysis)

  • 정수형;박성우
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.19-30
    • /
    • 2014
  • 본 연구에서는 강주탑 기부와 기초콘크리트 연결 구조에 대해서 국내에서 특수교량의 강주탑 기부 설계에 보편적으로 적용하고 있는 명석해협대교(明石海峽大橋) 시방기준과 비선형 FEM 해석결과를 비교하였다. 명석해협대교(明石海峽大橋) 시방기준은 1970년도에 만들어진 일본 기준으로 주탑 기부와 PS 강봉 및 기초콘크리트를 스프링으로 선형 모델링하여 설계하는 방법으로서 43년이 지난 지금까지도 간편성을 이유로 이 기준을 적용하고 있다. 그러나 비선형 FEM 해석결과의 비교를 통해 특수 장대교의 강주탑 기부의 해석 및 설계에 이 기준을 적용하는 것은 여러 가지 문제점이 있음을 알 수 있었으며, 풍하중, 지진하중에 주요하게 저항하면서도 다양한 부재들로 복잡하게 연결된 강주탑 기부에 대해서는 한계상태설계법으로 발전하려는 현 시대에 맞추어 실제 거동을 반영하는 비선형 FEM해석을 적용해야 할 것이다.

Computer aided reinforcement design of RC structures

  • An, Xuehui;Maekawa, Koichi
    • Computers and Concrete
    • /
    • 제1권1호
    • /
    • pp.15-30
    • /
    • 2004
  • In this study, a design process for reinforced concrete structures using the nonlinear FEM analysis is developed. Instead of using the nonlinear analysis to evaluate the required performance after design process, the nonlinear analysis is applied before designing the reinforcement arrangement inside the RC structures. An automatic reinforcement generator for computer aided reinforcement agreement is developed for this purpose. Based on a nonlinear FEM program for analyzing the reinforced concrete structure, a smart fictitious material model of steel, is proposed which can self-adjust the reinforcement to the required amount at the cracking location according to the load increment. Using this tool, the reinforcement ratio required at design load level can be decided automatically. In this paper, an example of RC beam with opening is used to verify the proposed process. Finally, a trial design process for a real size underground RC LNG tank is introduced.

Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions

  • Alimirzaei, S.;Mohammadimehr, M.;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.485-502
    • /
    • 2019
  • In this research, the nonlinear static, buckling and vibration analysis of viscoelastic micro-composite beam reinforced by various distributions of boron nitrid nanotube (BNNT) with initial geometrical imperfection by modified strain gradient theory (MSGT) using finite element method (FEM) are presented. The various distributions of BNNT are considered as UD, FG-V and FG-X and also, the extended rule of mixture is used to estimate the properties of micro-composite beam. The components of stress are dependent to mechanical, electrical and thermal terms and calculated using piezoelasticity theory. Then, the kinematic equations of micro-composite beam using the displacement fields are obtained. The governing equations of motion are derived using energy method and Hamilton's principle based on MSGT. Then, using FEM, these equations are solved. Finally the effects of different parameters such as initial geometrical imperfection, various distributions of nanotube, damping coefficient, piezoelectric constant, slenderness ratio, Winkler spring constant, Pasternak shear constant, various boundary conditions and three material length scale parameters on the behavior of nonlinear static, buckling and vibration of micro-composite beam are investigated. The results indicate that with an increase in the geometrical imperfection parameter, the stiffness of micro-composite beam increases and thus the non-dimensional nonlinear frequency of the micro structure reduces gradually.

희귀행렬 SS-FEM에 의한 비선형 광섬유의 전송신호 해석 (Analysis of Signal Propagation in Nonlinear Optical Fiber using SS-FEM with Sparse Matrix)

  • 정백호;이호준
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권1호
    • /
    • pp.52-58
    • /
    • 2000
  • Signal propagation in nonlinear optical fiber is analyzed numerically by using SS-FEM (Split-Step Finite Element Method). By adopting cubic element function in FEM, soliton equation of which exact solution was well known, has been solved. Also, accuracy of numerical results and computing times are compared with those of Fourier method, and we have found that solution obtained from using FEM was very relatively accurate. Especially, to reduce CPU time in matrix computation in each step, the matrix imposed by the boundary condition is approximated as a sparse matrix. As a result, computation time was shortened even with the same or better accuracy when compared to those of the conventional FEM and Fourier method.

  • PDF

비선형 Galerkin-FEM 모형 개발 (A Three-Dimensional Nonlinear Galerkin-FEM Model)

  • 강관수;정경태;선우중호
    • 한국해안해양공학회지
    • /
    • 제7권1호
    • /
    • pp.33-45
    • /
    • 1995
  • 본 논문은 강 등(1994)에 의해 개발된 선형 Galerkin-FEM 모형에 이송항을 추가하여 비선형 Galerkin-FEM 수치모형을 개발하는데 목적이 있다. 이송항의 수치계산은 기존 선형모형의 각 절점별 유속결과를 이용하여 계산하였으며 개발된 모형은 기존의 비선형모형(Owen, 1980; Davies, 1980)보다 수치계산시간의 절약을 도모할 수 있어 효율적이다(Lardner and Song, 1992). 비선형항의 효과를 검토하기 위하여 두가지 수치실험을 수행하였다. 수행한 수치실험은 장방형 영역에서의 취송류실험과 일정유속이 개방경계에서 주어지고 모형영역 중간에 도유제가 있는 경우에 과류형성에 대한 수치실험을 수행하였다. 수치실험 결과 취송류실험의 경우 이송항에 의한 비선형 효과가 적었으며 과류형성 실험인 경우 이송항에 의한 비선형 효과가 크게 나타났고 Stelling(1984)의 연구 결과와 유사하게 재현되었다.

  • PDF

Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.431-454
    • /
    • 2016
  • In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam model reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) with initial geometrical imperfection under uniformly distributed load using finite element method (FEM) is investigated. The governing equations of equilibrium are derived by the Hamilton's principle and von Karman type nonlinear strain-displacement relationships are employed. Also the influences of various loadings, amplitude of the waviness, UD, USFG, and SFG distributions of carbon nanotube (CNT) and different boundary conditions on the dimensionless transverse displacements and nonlinear frequency ratio are presented. It is seen that with increasing load, the displacement of USFG beam under force loads is more than for the other states. Moreover it can be seen that the nonlinear to linear natural frequency ratio decreases with increasing aspect ratio (h/L) for UD, USFG and SFG beam. Also, it is shown that at the specified value of (h/L), the natural frequency ratio increases with the increasing the values amplitude of waviness while the dimensionless nonlinear to linear maximum deflection decreases. Moreover, with considering the amplitude of waviness, the stiffness of Euler-Bernoulli beam model reinforced by FG-CNT increases. It is concluded that the R parameter increases with increasing of volume fraction while the rate of this parameter decreases. Thus one can be obtained the optimum value of FG-CNT volume fraction to prevent from resonance phenomenon.

A Study on a Composite Laminate Pull-through Joint

  • Kwon, Jeong-Sik;Kim, Jin-Sung;Seo, Bum-Kyung;Lee, Soo-Yong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.63-69
    • /
    • 2017
  • In this paper, composite laminate pull-through resistance was analyzed using the FEM method and compared with test results. 2D and 3D simplified FEM models, a nonlinear analysis, and a progressive failure analysis utilizing three composite laminate failure theories Maximum Stress, Maximum Strain, and Tsai-Wu were used to predict the FEM results with the test results. The load and boundary conditions of the test were applied to the FEM to simulate the test. A composite laminate pull-through test (ASTM D7332 Proc. B) was designed with a special fixture to collect more precise data. The test results were compared with the FEM analysis results.

Nonlinear first ply failure analysis of composite skewed hypar shells using FEM

  • Ghosh, Arghya;Chakravorty, Dipankar
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.81-94
    • /
    • 2018
  • This paper uses the finite element method (FEM) considering geometrically nonlinear strains to study the first ply failure of laminated composite skewed hypar shell roofs through well-established failure criteria along with the serviceability criterion of deflection. Apart from validating the approach through solution of benchmark problems, skewed hypars with different practical parametric variations are studied for failure loads and tendencies. First ply failure zones are also identified to suggest design and non-destructive monitoring guidelines to the practising engineers. Recommendation tables regarding the design approaches to be adopted in specific cases and factor of safety values needed to be imposed on first ply failure load values for varying shell curvatures are also suggested in this paper. Providing practical inputs to design engineers is the main achievement of the present study.

Large deformation bending analysis of functionally graded spherical shell using FEM

  • Kar, Vishesh Ranjan;Panda, Subrata Kumar
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.661-679
    • /
    • 2015
  • In this article, nonlinear finite element solutions of bending responses of functionally graded spherical panels are presented. The material properties of functionally graded material are graded in thickness direction according to a power-law distribution of volume fractions. A general nonlinear mathematical shallow shell model has been developed based on higher order shear deformation theory by taking the geometric nonlinearity in Green-Lagrange sense. The model is discretised using finite element steps and the governing equations are obtained through variational principle. The nonlinear responses are evaluated through a direct iterative method. The model is validated by comparing the responses with the available published literatures. The efficacy of present model has also been established by demonstrating a simulation based nonlinear model developed in ANSYS environment. The effects of power-law indices, support conditions and different geometrical parameters on bending behaviour of functionally graded shells are obtained and discussed in detail.

Numerical Analysis on Iron Loss and PM Loss of Permanent Magnet Synchronous Motor Considering the Carrier Harmonics

  • Lee, Dongsu;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.216-219
    • /
    • 2013
  • In this paper, the influence of inverter switching harmonics on iron loss and PM loss of Permanent Magnet Synchronous Motor (PMSM) is numerically investigated by Finite Element Method (FEM). In particular, nonlinear FEM is applied for a multi-layered PM Synchronous Motors (PMSMs), Interior buried PMSM (IPMSM) and PM assisted Synchronous Reluctance Motor (PMa-SynRM), which are adoptively designed and compared for Electric Vehicle (EV) propulsion. In particular, iron loss and PM eddy-current loss under the real current waveform including the carrier harmonics from inverter switching are numerically analyzed with nonlinear FEM by considering the skewed stator structure employed for minimizing spatial harmonics.