• Title/Summary/Keyword: nonionic surfactants

Search Result 194, Processing Time 0.024 seconds

Emulsification of Chloroprene Rubber (CR) by Interfacial Chemistry; Stabilization and Enhancement of Mechanical Properties

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • In this work, CR (Chloroprene Rubber) was emulsified by phase-inversion emulsification with nonionic surfactants (NP-1025, LE-1017, and OP-1019) and an anionic surfactant (SDBS; sodium dodecylbenzenesulfonate), and its stabilization was investigated through a study of its adsorption characteristics, zeta potential, and flow behavior. As the amount of the mixed surfactant increased, the droplet size decreased, resulting in the increase of viscosity. In particular, a CR emulsion with a lower absorbance in the UV spectrum exhibited the highest zeta potential. The results of this experiment showed that the CR emulsion prepared using (LE-1017) and SDBS was the most stable. In this study, calcium hydroxide and aluminum hydroxide were added to enhance the mechanical properties of the CR emulsion, and the relationship between tensile strength, tear strength and surface free energy were investigated. The tensile and tear strengths of the CR emulsion incresed as the amount of calcium hydroxide and aluminum hydroxide increased. The highest tensile and tear strengths and surface free energy were observed for additions of 1.0% calcium hydroxide and 0.80% aluminum hydroxide, respectively. It was concluded that the interfacial bonding strength was improved by the even dispersion of calcium hydroxide and aluminum hydroxide in the CR emulsion.

Solution Properties of Polyglycerol Alkyl Ether Nonionic Surfactant (폴리글리세롤을 친수성기로한 비이온성 계면활성제의 용액성)

  • Yun, Y.K.;Nam, K.D.;Kang, T.J.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.107-117
    • /
    • 1992
  • The synthesis and solution properties of polyglycerol alkyl ether($R_{12}Gn$) are described. The phase behavior, surface tension, cloud point and HLB value of polyglycerol dodecyl ether in aqueous solution and in mixed solution of surfactant /water /oil have been investigated and compared with values of polyoxyethylene dodecyl ether. The surface tension showed that $R_{12}Gn$ have sufficiently low values of surface tension and cmc to serve as useful polyoxyethylene alkyl ether. The mesophases appearing in the $R_{12}Gn$ systems were more stable in a high temperature range than the mesophases of polyoxyethylene alkyl ether systems. The cloud point and HLB data indicated that addition of one glycerol group was equivalent to the addition of three oxyethylene group units, as far as the hydrophilic property was concerned. The phase diagrams of the polyglycerol alkyl ether /dodecane /water systems showed that the solubilizing and emulsifying powers of $R_{12}Gn$ were greater than those of polyoxyethylene alkyl ether. It is concluded that the polyglycerol chain can be even more useful as hydrophilic group of nonionic surfactants than the polyoxyethylene chain.

Disjoining Process Isotherms for oil-water-oil Emulsion Films (오일-물-오일 에멜젼막의 Disjoining Pressure에 관한 연구)

  • 조완구
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.2
    • /
    • pp.71-96
    • /
    • 1997
  • We have used a novel liquid surface forces apparatus to determine the variation of disjoining pressure with film thickness for dodecane-water-dodecane emulsion films. The LSFA allows measurement of film thicknesses in the range 5-100 nm and disjoining pressure from 0-1500 Pa. Disjoining pressure isotherms are given for films stabilised by the nonionic surfactnat n-dodecyl pentaoxyethylene glycol ether$(C_{12}E_5)$ and n-decyl-$\beta$-D-glucopyranoside($C_{10}- $\beta$-Glu)$ and the anionic surfactant sodium bis(2-ethylhexyl) sulphosuccinate(AOT) in the presense of added electrolyte. For $C_{12}E_5$ and AOT, the emulsion films are indefinitely stable even for the highest concentration of NaCl tested (136.7 Nm) whereas the $C_{10}-{eta}-Glu$ film shows coalescence at this salt concentration. For film thicknesses greater than approximately 20 nm with all three surfactants, the disjoining pressure isotherms are reasonably well described in terms of electrostatic and van der Waals, forces. For the nonionic surfactant emulsion films, the charge properties of the monolayers are qualitatively similar to those seen for foam films. For AOT emulsion films, the monolayer surface potentials estimated by fitting the isotherms are similar to the values of the zeta potential measured for AOT stabilised emulsion droplets. For thin emulsion films certain systems showed isotherms which suggested the presence of an additional repulsive force with a range of approximately 20 nm.

  • PDF

Phase Inversion Emulsification and Enhancement of Physical Properties for Cationic Emulsified Asphalt

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.265-273
    • /
    • 2015
  • In this work, the emulsified asphalt with high phase stability and storage stability was prepared by using phase inversion emulsification and the surfactant mixed with cationic and nonionic surfactants. It was found that the asphalt together with Span 20, nonionic surfactant and DDA (Dimethyl Dodecyl Amine), cationic surfactant showed the most stable phase. The phase stability of the emulsified asphalt, therefore, was investigated through the particle size with mixed surfactant content, rheology behavior and Zeta potential value; the particle size decreased with the increase of the mixed surfactant content but the viscosity increased. The shear thinning behaviors and the Zeta potential value with 50 mV~60 mV were shown, which was found to be considered stable. In addition, SBR latex(Styrene-butadiene-rubber) and water dispersed Epoxy (EPD) were used to enhance the physical properties of the emulsified asphalt. The swelling and adhesion features of the emulsified asphalt were also studied with $CaCO_3$, Silica, and Montmorillonite (MMT). It was shown that the addition of SBR latex and MMT can be another way to improve the physical properties of the emulsified asphalt in that the lowest swelling feature was found.

Surfactant Washing of Organics from a Contaminated Site I. Clean Up of Hydrocarbon Contaminated Soils (Surfactant washing에 의한 토양 내의 유기물 제거에 관한 연구 I. 탄화수소로 오염된 토양의 정화)

  • Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.357-364
    • /
    • 1997
  • The objective of this study was to find optimum nonionic surfactants for clean up of soils contaminated by hydrocarbon oils. PIT(phase inversion temperature) measurements in ternary systems containing pure hydrocarbons, pure nonionic surfactants, and water were carried out and interfacial tensions were measured as a function of time for n-hexadecane oil drops brought into contact with various mixtures of nonionic surfactant and water. Batch surfactant washing experiments were performed based on the measurement, results of PIT and interfacial tension and the results showed that maximum removal of n-hexadecane occurred at the PIT of the system. For the $C_{12}E_5(C_{12}H_{25}O(CH_2CH_2O)_5H)$ system, maximum n-hexadecane removal of 73.4% occurred at the PIT of $52^{\circ}C$. In contrast, n-hexadecane removal at $25^{\circ}C$ and at $60^{\circ}C$, each corresponding to the conditions of below PIT and above PIT of the system, was found to be 57.1% and 57.0% respectively. The maximum removal of a hydrocarbon at the PIT of a system, where the hydrophilic and hydrophobic properties are balanced, was found to be due to the existence of high oil solubilization into a middle-phase microemulsion and ultralow interfacial of the order of $10^{-2}$ to $10^{-3}$ dyne/cm between middle-phase microemulsion and excess oil phase.

  • PDF

Removal of Sorbed Naphthalene from Soils Using Nonionic Surfactant (비이온성 계면활성제를 이용한 토양내 수착된 나프탈렌의 제거)

  • Ha, Dong-Hyun;Shin, Won-Sik;Oh, Sang-Hwa;Song, Dong-Ik;Ko, Seok-Oh
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.549-563
    • /
    • 2010
  • The environmental behaviors of polycyclic aromatic hydrocarbons (PAHs) are mainly governed by their solubility and partitioning properties on soil media in a subsurface system. In surfactant-enhanced remediation (SER) systems, surfactant plays a critical role in remediation. In this study, sorptive behaviors and partitioning of naphthalene in soils in the presence of surfactants were investigated. Silica and kaolin with low organic carbon contents and a natural soil with relatively higher organic carbon content were used as model sorbents. A nonionic surfactant, Triton X-100, was used to enhance dissolution of naphthalene. Sorption kinetics of naphthalene onto silica, kaolin and natural soil were investigated and analyzed using several kinetic models. The two compartment first-order kinetic model (TCFOKM) was fitted better than the other models. From the results of TCFOKM, the fast sorption coefficient of naphthalene ($k_1$) was in the order of silica > kaolin > natural soil, whereas the slow sorbing fraction ($k_2$) was in the reverse order. Sorption isotherms of naphthalene were linear with organic carbon content ($f_{oc}$) in soils, while those of Triton X-100 were nonlinear and correlated with CEC and BET surface area. Sorption of Triton X-100 was higher than that of naphthalene in all soils. The effectiveness of a SER system depends on the distribution coefficient ($K_D$) of naphthalene between mobile and immobile phases. In surfactant-sorbed soils, naphthalene was adsorbed onto the soil surface and also partitioned onto the sorbed surfactant. The partition coefficient ($K_D$) of naphthalene increased with surfactant concentration. However, the $K_D$ decreased as the surfactant concentration increased above CMC in all soils. This indicates that naphthalene was partitioned competitively onto both sorbed surfactants (immobile phase) and micelles (mobile phase). For the mineral soils such as silica and kaolin, naphthalene removal by mobile phase would be better than that by immobile phase because the distribution of naphthalene onto the micelles ($K_{mic}$) increased with the nonionic surfactant concentration (Triton X-100). For the natural soil with relatively higher organic carbon content, however, the naphthalene removal by immobile phase would be better than that by mobile phase, because a high amount of Triton X-100 could be sorbed onto the natural soil and the sorbed surfactant also could sorb the relatively higher amount of naphthalene.

Preparation of Mesoporous Molecular Sieve by the Reaction of Na2SiO3 and H2SiF6 in the Presence of an Aqueous Nonionic Surfactant Solution (비이온성 계면활성제 수용액에서 Na2SiO3와 H2SiF6의 반응을 통한 메조포러스 실리카의 제조)

  • Kim, Jin-Yeong;Kwon, Oh-Yun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.122-126
    • /
    • 2018
  • Mesoporous molecular sieves were prepared by the reaction of $Na_2SiO_3$ and $H_2SiF_6$ using nonionic micelle templates in an aqueous solution. Well-crystalline mesoporous molecular sieves were obtained after several seconds at atmospheric conditions. Powder samples exhibited d-spacing of 3.8-5.1 nm with the sharpness of the d00l peak, showing well-crystalline mesoporous molecular sieves, pore size distributions of 2.5-3.1 nm and large specific surface areas of $290-1,018m^2/g$, depending on types of surfactants. SEM images of samples showed well-divided spherical particles with an uniform size of ${\sim}0.5{\mu}m$ and TEM images demonstrated uniform pores with a worm hole shape.

Synthesis and Surface Active Properties of Amino Acid Monoglyceride (아미노산 모노글리세리드류의 합성 및 계면성)

  • Jo, Kyung-Haeng;Kim, Tae-Young;Kim, Seong-Ung;Jeong, No-Hee;Nam, Ki Dae
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.99-104
    • /
    • 1994
  • Nonionic surfactants, monoglyceryl pyroglutamates, have been synthesized in a high yield by esterification of monoglyceride with pyroglutamic acid in the presence of sodium acetate catalyst. Their structures were confirmed by IR and $^1H-NMR$ studies. For these compounds surface active properties including interfacial tension and emulsifying power were measured. The interfacial tensions of their oil solution against water were decreased to 5~9dyne/cm and hydrophobic alkyl chain of monoglyceryl pyroglutamates. The experimental results indicated that emulsifying power of the nonionic surfactant was better in benzene than in soybean oil. Due to the good surface properties, the nonionic sutfactants, monoglyceryl pyroglutamates, are expected to be used as emulsifiers.

  • PDF

lnfluence of Surfactants on Foliar Uptake of Dimethomorph into Cucumber Plant and Fungicidal Activity to Cucumber Downy Mildew (계면활성제가 살균제 Dimethomorph의 오이 엽면 침투성과 오이 노균병 방제 효과에 미치는 영향)

  • Choi, Gyung-Ja;Lim, He-Kyoung;Kim, Jeong-Han;Cho, Kwang-Yun;Yu, Ju-Hyun
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.109-115
    • /
    • 2001
  • The foliar uptake of dimethomoiph induced by several nonionic surfactants was measured in order to study the correlations between the uptake rate of dimethomorph and the fungicidal activity to cucumber downy mildew. Dimethomorph was not absorbed in cucumber leaf in the absence of activator surfactant. And the curative effect of dimethomoiph WP to cucumber downy mildew was very low under the concentration of 250 ${\mu}g/ml$. But dimethomorph uptake was remarkably enhanced by addition of nonionic surfactants, such as polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, and polyoxyethylene stearyl ether. And the curative effect to cucumber downy mildew was enhanced with proportion to uptake rate of dimethomorph. The protective effect to cucumber downy mildew, however, tends to decrease with the increase of foliar uptake of dimethomorph. The uptake rate of dimethomorph to cucumber leaf was proportional to the content of polyoxyethylene cetyl ether in formulation, but was decreased with dilution.

  • PDF

Thermodynamics on the Micellization of Pure Cationic(DTAB, TTAB, CTAB), Nonionic(Tween-20, Tween-40, Tween-80), and Their Mixed Surfactant Systems (순수 양이온성(DTAB, TTAB, CTAB), 비이온성(Tween-20, Tween-40, Tween-80) 및 이들 혼합 계면활성제의 미셀화에 대한 열역학적 연구)

  • Lee, Nam-Min;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.679-687
    • /
    • 2013
  • The critical micelle concentration (CMC) and counter-ion binding constant (B) of the pure cationic surfactants (DTAB, TTAB, CTAB), nonionic surfactants (Tween-20, Tween-40, Tween-80), and their mixed surfactants (TTAB/Tween-20, TTAB/Tween-40, TTAB/Tween-80) in aqueous solutions of 4-chlorobenzoic acid were determined by using the UV/Vis absorbance method and the conductivity method from 284 K to 312 K. Thermodynamic parameters (${\Delta}G^o{_m}$, ${\Delta}H^o{_m}$, and ${\Delta}S^o{_m}$), associated with the micelle formation of those surfactant systems, have been estimated from the dependence of CMC and B values on the temperature and carbon length of surfactant molecules. The calculated values of ${\Delta}G^o{_m}$ are all negative within the measured range but the values of ${\Delta}H^o{_m}$ and ${\Delta}S^o{_m}$ are positive or negative, depending on the length of the carbon chain and surfactant.