• Title/Summary/Keyword: nonhomogeneous Besov space

Search Result 1, Processing Time 0.016 seconds

THE CAUCHY PROBLEM FOR AN INTEGRABLE GENERALIZED CAMASSA-HOLM EQUATION WITH CUBIC NONLINEARITY

  • Liu, Bin;Zhang, Lei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.267-296
    • /
    • 2018
  • This paper studies the Cauchy problem and blow-up phenomena for a new generalized Camassa-Holm equation with cubic nonlinearity in the nonhomogeneous Besov spaces. First, by means of the Littlewood-Paley decomposition theory, we investigate the local well-posedness of the equation in $B^s_{p,r}$ with s > $max\{{\frac{1}{p}},\;{\frac{1}{2}},\;1-{\frac{1}{p}}\},\;p,\;r{\in}[0,{\infty}]$. Second, we prove that the equation is locally well-posed in $B^s_{2,r}$ with the critical index $s={\frac{1}{2}}$ by virtue of the logarithmic interpolation inequality and the Osgood's Lemma, and it is shown that the data-to-solution mapping is $H{\ddot{o}}lder$ continuous. Finally, we derive two kinds of blow-up criteria for the strong solution by using induction and the conservative property of m along the characteristics.