• Title/Summary/Keyword: nondestructive testing

Search Result 1,674, Processing Time 0.019 seconds

Evaluation of Signal Stability of Fiber Optic Sensors with respect to Sensor Packaging Methods in Long-Term Monitoring (장기 모니터링 환경에서 센서 패키징 방법에 따른 광섬유 센서의 신호 안정성 평가)

  • Kang, Donghoon;Kim, Heon-Young;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.281-287
    • /
    • 2016
  • Fiber Bragg grating (FBG) sensors are applied in structural health monitoring (SHM) in various application fields because of their ease of multiplexing and capability of performing absolute measurements. Moreover, the packaging methods of FBG sensors accelerate their commercialization rapidly. However, long-term SHM exposes the FBG sensors to cyclic thermal loads, and a investigation is required because it finally leads to the signal instability of the FBG sensors. In this study, the effects of sensor packaging methods two methods are generally used for the FBGs: (bonding both sides of the FBG or bonding the FBG directly on signal stability of FBG sensors are investigated. Tests are conducted on specimens in a thermal chamber, over a temperature range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Signal characteristics such as Bragg wavelength, light intensity and full width at half maximum are examined and are compared with those of the FBG sensors, obtained in a previous study under direct bonding conditions. From the comparison, it is observed that the FBG sensors with bonding on both sides of the FBG demonstrate higher signal stabilities when exposed to cyclic thermal loads during long-term SHM. Consequently, it guarantees more effectiveness when packaging the FBG sensors.

Development of Non-Contact Fiber Jumper Cord and Evaluation of Light Transmission Performance (비접촉식 광 점퍼 코드 개발 및 광 전송 성능 평가)

  • Kim, Heonyoung;Kang, Donghoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.399-405
    • /
    • 2016
  • Recently, fiber optic sensors, which have many advantages are being applied in various fields by replacing conventional electric sensors. To transmit the light signals between an interrogator and a sensor head, optical components such as an optical adaptor and optical jumper cords are generally used. When signals are transmitted using an adaptor, the end surface of each jumper cord is faced together. If alien substances exist on the core surface of an optical fiber, those can cause light transmission loss and signal disappearance. For this reason, non-contact fiber jumper cords are developed to overcome the problems that require continual attention. The light transmission performance of non-contact fiber jumper cords are also evaluated. From the test results, conventional fiber jumper cords are unable to transmit the signals over 2 mm cavity between the ends of both cords. Otherwise, non-contact fiber jumper cords can transmit the signals with stability up to the cavity of 7 mm though they have more transmission loss than the conventional ones. Consequently, non-contact fiber jumper cords that have better signal stability than conventional ones in environments are highly recommended in field applications, especially if they play a role as a cable for signal transmission between fiber optic sensors.

Measuring Plate Thickness Using Spatial Local Wavenumber Filtering (국소 공간 웨이브넘버 필터링 기법을 이용한 평판 구조물 두께 측정)

  • Kang, To;Lee, Jeong Han;Han, Soon Woo;Park, Jin Ho;Park, Gyuhae;Jeon, Jun Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.370-376
    • /
    • 2016
  • Corrosion on the surface of a structure can generate cracks or cause walls to thin. This can lead to fracturing, which can eventually lead to fatalities and property loss. In an effort to prevent this, laser imaging technology has been used over the last ten years to detect thin-plate structure, or relatively thin piping. The most common laser imaging was used to develop a new technology for inspecting and imaging a desired area in order to scan various structures for thin-plate structure and thin piping. However, this method builds images by measuring waves reflected from defects, and subsequently has a considerable time delay of a few milliseconds at each scanning point. In addition, the complexity of the system is high, due to additional required components, such as laser-focusing parts. This paper proposes a laser imaging method with an increased scanning speed, based on excitation and the measurement of standing waves in structures. The wavenumber of standing waves changes at sections with a geometrical discontinuity, such as thickness. Therefore, it is possible to detect defects in a structure by generating standing waves with a single frequency and scanning the waves at each point by with the laser scanning system. The proposed technique is demonstrated on a wall-thinned plate with a linear thickness variation.

Active-Sensing Based Damage Monitoring of Airplane Wings Under Low-Temperature and Continuous Loading Condition (능동센서 배열을 이용한 저온 반복하중 환경 항공기 날개 구조물의 손상 탐지)

  • Jeon, Jun Young;Jung, Hwee kwon;Park, Gyuhae;Ha, Jaeseok;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.345-352
    • /
    • 2016
  • As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beamforming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

Detection of Hydride Blisters in Zirconium Pressure Tubes using Ultrasonic Mode Conversion and Velocity Ratio Method (초음파 모드 변환 및 속도비 방법에 의한 지르코늄 압력관의 수소화물 블리스터 탐지)

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Young-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.334-341
    • /
    • 2003
  • When the pressure tubes(f are in contact with the calandria tube(CT) in the pressurized heavy water reactor(PHWR), the temperature difference between inner and outer wall of W results in a thermal diffusion of hydrogen (deuterium) and hydride blisters are formed on the outer surface of PT. Because the hydride blisters and zirconium matrix are acoustically continuous, it is not easy to distinguish the blisters from the matrix with conventional ultrasonic method. An ultrasonic velocity ratio method was developed to detect small hydride blisters on the zirconium pressure tube. Hydride blisters were grown in the PT specimen using a steady state thermal diffusion device. The flight times of longitudinal echo and reflected shear echo from the outer surface were measured accurately. The velocity ratio of the longitudinal wave to the shear wave was calculated and displayed using contour plot. Compared to the conventional flight time method of longitudinal wave, the velocity ratio method shows superior sensitivity to detect smaller blisters as well as better images for the blister shapes. Detectable limit of the outer shape of the hydride blisters was conservatively estimated as $500{\mu}m$, with the same specifications of ultrasonic transducer used in the actual PHWR pressure tube inspection.

The Effect of Residual Stress on Magnetoresistance in GMR Head Multilayers (자기기록 MR 헤드 용 다층박막의 자기저항에 미치는 잔류응력 효과)

  • Hwang, Do-Guwn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.322-327
    • /
    • 2003
  • Giant magnetoresistance(GMR) NiO multilayer, which has been used to reading head of highly dense magnetic recording, was fabricated, and oxidized in an air during 80 days to study the dependence of magnetoresistance properties on residual stress in the interfaces. The magnetoresistance ratio and the exchange biasing $field(H_{ex})$ of $NiO(60nm)/Ni_{81}Fe_{19}(5nm)/Co(0.7nm)/Cu(2nm)/Co(0.7nm)/Ni_{81}Fe_{19}(7nm)$ spin valves were increased from 4.9% to 7.3%, and 110 Oe to 170 Oe after natural oxidation in the atmosphere for 80 days, respectively. The sheet resistivity ${\rho}$ decreased from $28{\mu}{\Omega}m$ to $17{\mu}{\Omega}m$, but ${\Delta}p$ did not almost change after the oxidation. Therefore, the increase of MR ratio is due to the decrease in the sheet resistivity. the reduced resistance may result from the increase in the reflection of conduction electrons at the oxidized top surface. Also, the increase in the exchange biasing field is originated from the reduction of residual stress at the interface of $NiO/Ni_{81}Fe_{19}$ according as the aging time increases.

Detection of Small Flaws in SiC Structural Ceramic in High Frequency Detection Field (고주파수 초음파 검출장에서 SiC 세라믹 내부의 미세결함 검출)

  • Kim, Byoung-Geuk;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.100-107
    • /
    • 1997
  • It has been required to find flaws smaller than $100{\mu}m$ by fracture mechanic consideration. We prepared the infiltrated and sintered SiC structural ceramic specimens including artificial flaws, Fe, pore, WC, Si particles of size ranging from $36{\mu}m$ to $200{\mu}m$. We performed C-scan for the specimen using a high frequency and broad-band ultrasonic transducer to employ polyvinylidene fluoride(PVDF) and a broad-band electric scanning system. The flaws in the ceramic specimens were detected in the high frequency detection field up to 100MHz. But, the flaws were not detected in lower frequency detection field up to 60MHz. The ratio of the detected smallest flaw size to the wavelength calculated at the center frequency, 80MHz, was about 0.25 in Rayleigh scattering region.

  • PDF

A Study on the Security of Infrastructure using fiber Optic Scattering Sensors (광섬유 산란형 센서를 이용한 사회기반시설물의 보안에 관한 연구)

  • Kwon, Il-Bum;Yoon, Dong-Jin;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.499-507
    • /
    • 2004
  • We have studied tile detection techniques, which can determine the location and the weight of an intruder into infrastructure, by using fiber-optic ROTDR (Rayleigh optical time domain reflectometry) sensor and fiber-optic BOTDA (Brillouin Optical time domain analysis) sensor, which can use an optical fiber longer than that of ROTDR sensor Fiber-optic sensing plates of ROTDR sensor, which arc buried in sand, were prepared to respond the intruder effects. The signal of ROTDR was analyzed to confirm the detection performance. The constructed ROTDR could be used up to 10km at the pulse width of 30ns. The location error was less than 2 m and the weight could be detected as 4 grades, such as 20kgf, 40kgf, 60kgf and 80kgf. Also, fiber optic BOTDA sensor was developed to be able to detect intrusion effect through an optical fiber of tells of kilometers longer than ROTDR sensor. fiber-optic BOTDA sensor was constructed with 1 laser diode and 2 electro-optic modulators. The intrusion detection experiment was peformed by the strain inducing set-up installed on an optical table to simulate all intrusion effect. In the result of this experiment, the intrusion effort was well detected as the distance resolution of 3m through the fiber length of about 4.81km during 1.5 seconds.

Development of Smart Active Layer Sensor (II): Manufacturing and Application (스마트 능동 레이어 센서 개발 (II): 저작 및 적용 연구)

  • Lee, Young-Sup;Lee, Sang-Il;Kwon, Jae-Hwa;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.476-486
    • /
    • 2004
  • This paper is the second part of the study on the development of a smart active layer (SAL) sensor, which consists of two parts. As mentioned in the first paper, structural health monitoring (SHM) is a new technology that is being increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor which is described with regard to the theory and concept of the SAL sensor in the first paper. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper In this study, SAL sensor ran be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves.

Degradation Evaluation of High Pressure Reactor Vessel in field Using Electrical Resistivity Method (전기비저항법을 이용한 고압반응기 열화도 현장평가)

  • Park, Jong-Seo;Baek, Un-Bong;Nahm, Seung-Hoon;Han, Sang-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.377-383
    • /
    • 2005
  • Because explosive fluid is used at high temperature or under high pressure in petrochemistry and refined oil equipment, the interest about safety of equipments is intensive. Specially, the safety of high pressure reactor vessel is required among them. The material selected in this study is 2.25Cr-1Mo steel that is widely used for high pressure reactor vessel material of petrochemical plant. Eight kinds of artificially aged specimens were prepared by differing from aging periods under three different temperatures. The material was iso-thermally heat treated at higher temperatures than $391^{\circ}C$ that is the operating temperature of high pressure reactor vessel. Vickers hardness properties and electrical resistivity properties about artificially aged material as well as un-aged material were measured, and master curves were made out from the correlation with larson-Miller parameter. And electrical resistivity properties as well as Victors hardness properties measured at high pressure reactor vessel of the field were compared with master curves made out in a laboratory. Degradation evaluation possibility in the field of high pressure reactor vessel by using electrical resistivity method was examined. Electrical resistivity property measured in the field is similar with that of artificially aged material in similar aging level.