• Title/Summary/Keyword: nondestructive evaluation

Search Result 849, Processing Time 0.024 seconds

Development of Tomographic SASW Method to Evaluate Two-Dimensional Variability of Shear Stiffness (지반 및 구조물의 이차원적 전단강성 평가를 위한 토모그래픽 SASW 기법의 개발)

  • 조성호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.29-42
    • /
    • 1999
  • The SASW (Spectral-Analysis-of-Surface-Waves) method, which evaluates the stiffness structure of the subsurface and structures nonintrusively and nondestructively, has been successfully used in the civil engineering applications. However, the SASW method assumes that the subsurface or structures consist of horizontal multi-layers, so that the method has some difficulty in continuously evaluating the integrity of a tunnel lining and a pavement system. This difficulty prevents the SASW method from being used to generate a tomographic image of stiffness for the subsurface or structures. Recently, the GPR technique which has the advantage of continuously evaluating integrity of the subsurface and structures has been popular. This advantage of GPR technique initiated the efforts to make the SASW method, which is superior to GPR and other nondestructive testing methods due to its capability of evaluating stiffness and modulus, be able to do continuous evaluation of stiffness structure, and the efforts finally lead to the development of \ulcornerTomographic SASW Technique.\ulcorner Tomographic SASW technique is a variation of the SASW method, and can generate a tomographic image of stiffness structure along the measurement line. The tomographic SASW technique was applied to the investigation of lateral variability of a sand box placed by the raining method for the purpose of verifying its effectiveness. Tomographic SASW measurements on the sand box revealed that the investigated sand box has different shear stiffness along the measurement line, which gave a clue of how to make a better raining device.

  • PDF

Physical and Mechanical Properties of Phyllostachys pubescens According to Growth Age or Felling Time (죽령 및 벌채시기에 따른 맹종죽재의 물리적ㆍ기계적 특성)

  • 안상열;신훈재;변희섭;박상범;공영토
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.1
    • /
    • pp.8-16
    • /
    • 2003
  • The Phyllostachys pubescens planted in the Nambu forest Experiment was used for this study. The growth ages of the P. pubescens were 1, 2 and 3 years, respectively. The experiment was carried out every month in between June of 2001 and May of 2002. The p. pubescens were divided into upper, middle and lower parts according to the growing points. The static modulus of elascity($MOE_d$) and dynamic modulus of elascity($MOE_d$) were investigated for the physical and mechanical properties of the P. pubescens. The density, MOEs and $MOE_d$according to the growing points were highest in the upper part of the P. pubescens. Generally, density and MOEs and $MOE_d$ of the P pubescens for 3 years grows larger every month. However, moisture content, MOEs and $MOE_d$ of the P. pubescens for 1, 2 years had nothing to do with growth ages and felling time. In the case of the relationships between average MOEs and $MOE_d$ the correlation coefficient was 0.88 in between June of 2001 and May of 2002. Also, $MOE_d$ showed about 18.5% higher than MOEs. Generally, the equally expressed in research that was known that $MOE_d$ of wood is higher than MOEs of wood. Therefore, the $MOE_d$ using a resonance frequency mode is useful as a nondestructive evaluation(NDE) method for predicting the MOE of the P. pubescens.

  • PDF

The Effect of Grid Ratio and Material of Anti-scatter Grid on the Scatter-to-primary Ratio and the Signal-to-noise Ratio Improvement Factor in Container Scanner X-ray Imaging

  • Lee, Jeonghee;Lim, Chang Hwy;Park, Jong-Won;Kim, Ik-Hyun;Moon, Myung Kook;Lim, Yong-Kon
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.197-204
    • /
    • 2017
  • Background: X-ray imaging detectors for the nondestructive cargo container inspection using MeV-energy X-rays should accurately portray the internal structure of the irradiated container. Internal and external factors can cause noise, affecting image quality, and scattered radiation is the greatest source of noise. To obtain a high-performance transmission image, the influence of scattered radiation must be minimized, and this can be accomplished through several methods. The scatter rejection method using an anti-scatter grid is the preferred method to reduce the impact of scattered radiation. In this paper, we present an evaluation the characteristics of the signal and noise according to physical and material changes in the anti-scatter grid of the imaging detector used in cargo container scanners. Materials and Methods: We evaluated the characteristics of the signal and noise according to changes in the grid ratio and the material of the anti-scatter grid in an X-ray image detector using MCNP6. The grid was composed of iron, lead, or tungsten, and the grid ratio was set to 2.5, 12.5, 25, or 37.5. X-ray spectrum sources for simulation were generated by 6- and 9-MeV electron impacts on the tungsten target using MCNP6. The object in the simulation was designed using metallic material of various thicknesses inside the steel container. Using the results of the computational simulation, we calculated the change in the scatter-to-primary ratio and the signal-to-noise ratio improvement factor according to the grid ratio and the grid material, respectively. Results and Discussion: Changing the grid ratios of the anti-scatter grid and the grid material decreased the scatter linearly, affecting the signal-to-noise ratio. Conclusion: The grid ratio and material of the anti-scatter grid affected the response characteristics of a container scanner using high-energy X-rays, but to a minimal extent; thus, it may not be practically effective to incorporate anti-scatter grids into container scanners.

Degradation Evaluation of 1Cr-0.5Mo Steel using Barkhausen Noise (바크하우젠 노이즈에 의한 1Cr-0.5Mo 강의 열화도 평가)

  • Kim, Min-Gi;Park, Jong-Seo;Lee, Yun-Hee;Kim, Cheol-Gi;Ryu, Kwon-Sang
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.4
    • /
    • pp.136-140
    • /
    • 2011
  • Mechanical properties of degraded materials must be measured for evaluating the integrity of the facilities operating at high temperature. In fact it is complicated to obtain the different degraded specimens from an operating facility. Specimens of 1Cr-0.5Mo steel prepared by the isothermal heat treatment at $700^{\circ}C$ were tested, which has been widely used as tubes for heat exchangers and as plates for pressure vessels. The magnetic properties and Rockwell hardness (HRB) were measured at room temperature. The peak interval of Barkhausen noise envelope (PIBNE), coercivity, and hardness decreased with the increase of degradation. The magnetic and mechanical softening of matrix is likely to govern the properties of the specimen more than the hardening of grain boundary by carbide precipitations. The degradation of test material may be determined by the linear correlation of PIBNE and HRB. Degradation of 1Cr-0.5Mo steel could well be nondestructively evaluated by PIBNE measured with surface type probe.

Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

  • Park, Jong Man;Tahk, Young Wook;Jeong, Yong Jin;Lee, Kyu Hong;Kim, Heemoon;Jung, Yang Hong;Yoo, Boung-Ok;Jin, Young Gwan;Seo, Chul Gyo;Yang, Seong Woo;Kim, Hyun Jung;Yim, Jeong Sik;Kim, Yeon Soo;Ye, Bei;Hofman, Gerard L.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1044-1062
    • /
    • 2017
  • The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U-Mo fuel. Plate-type U-7 wt.% Mo/Al-5 wt.% Si, referred to as U-7Mo/Ale5Si, dispersion fuel with a uranium loading of $8.0gU/cm^3$, was selected to achieve higher fuel efficiency and performance than are possible when using $U_3Si_2/Al$ dispersion fuel. To qualify the U-Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U-7Mo/Al-5Si dispersion fuel ($8gU/cm^3$), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U-7Mo/Al-5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U-Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U-Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

Development of non-destructive freshness measurement system for eggs using PLC control and image processing (PLC제어와 영상처리를 이용한 계란의 비파괴 신선도 측정 시스템 개발)

  • Kim, Tae-Jung;Kim, Sun-Jung;Lee, Dong-Goo;Lee, Jeong-Ho;Lee, Young-Seok;Hwang, Heon;Choi, Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.162-169
    • /
    • 2019
  • Non-destructive freshness measurement using spectroscopy has been carried out several times, but research on freshness and freshness has not been conducted. Therefore the purpose of this study is to develop a system for visually measuring and quantifying the air sack inside the egg by non - destructive method. The experimental environment which designed a small chamber was composed of 850nm band of two IR lasers, IR camera and two servo motors to acquire air sack Images. When the air sack volume ratio is 2.9% or less and the density is 0.9800 or more, the Haugh Unit value is 60 or more It was judged to be a fresh egg of a grade B or higher. These results mean, using the weight measurement, nondestructive decision system, and freshness evaluating algorithm. It can be expected to distinguish grade B or more marketable eggs without using destructive methods.

Conservation Scientific Diagnosis and Evaluation of Bird Track Sites from the Haman Formation at Yongsanri in Haman, Korea (함안 용산리 함안층 새발자국 화석산지의 보존과학적 진단 및 평가)

  • Lee, Gyu Hye;Park, Jun Hyoung;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.3
    • /
    • pp.74-93
    • /
    • 2019
  • The Bird Track Site in the Haman Formation in Yongsanri (Natural Monument No. 222) was reported on the named Koreanaornis hamanensis and Jindongornipes kimi sauropod footprint Brontopodus and ichnospecies Ochlichnus formed by Nematoda. This site has outstanding academic value because it is where the second-highest number of bird tracks have been reported in the world. However, only 25% of the site remains after being designated a natural monument in 1969. This is due to artificial damage caused by worldwide fame and quarrying for flat stone used in Korean floor heating systems. The Haman Formation, including this fossil site, has lithofacies showing reddish-grey siltstone and black shale, alternately. The boundary of the two rocks is progressive, and sedimentary structures like ripple marks and sun cracks can clearly be found. This site was divided into seven formations according to sedimentary sequences and structures. The results of a nondestructive deterioration evaluation showed that chemical and biological damage rates were very low for all formations. Also, physical damage displayed low rates with 0.49% on exfoliation, 0.04% on blistering, 0.28% on break-out; however, the joint crack index was high, 6.20. Additionally, efflorescence was observed on outcrops at the backside and the northwestern side. Physical properties measured by an indirect ultrasonic analysis were found to be moderately weathered (MW). Above all, the southeastern side was much fresher, though some areas around the column of protection facility appeared more weathered. Furthermore, five kinds of discontinuity surface can be found at this site, with the bedding plane showing the higher share. There is the possibility of toppling failure occurring at this site but stable on plane and wedge failure by means of stereographic projection. We concluded that the overall level of deterioration and stability were relatively fine. However, continuous monitoring and conservation treatment and management should be performed as situations such as the physicochemical weathering of the fossil layer, and the efflorescence of the mortar adjoining the protection facility's column appear to be challenging to control.

Quantitative Analysis of Amylose and Protein Content of Rice Germplasm in RDA-Genebank by Near Infrared Reflectance Spectroscopy (근적외선 분광분석법을 이용한 벼 유전자원의 아밀로스 함량과 단백질 함량 정량분석)

  • Kim, Jeong-Soon;Cho, Yang-Hee;Gwag, Jae-Gyun;Ma, Kyung-Ho;Choi, Yu-Mi;Kim, Jung-Bong;Lee, Jeong-Heui;Kim, Tae-San;Cho, Jong-Ku;Lee, Sok-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.217-223
    • /
    • 2008
  • Amylose and protein contents are important traits determining the edible quality of rice, especially in East Asian countries. Near-Infrared Reflectance Spectroscopy (NIRS) has become a powerful tool for rapid and nondestructive quantification of natural compounds in agricultural products. To test the practically of using NIRS for estimation of brown rice amylose and protein contents, the spectral reflectances ($400{\sim}2500\;nm$) of total 9,483 accessions of rice germplasm in Rural development Administration (RDA) Genebank ere obtained and compared to chemically determined amylose and protein content. The protein content of tested 119 accessions ranged from 6.5 to 8.0% and 25 accessions exhibited protein contents between 8.5 to 9.5%. In case of amylose content, all tested accessions ranged from 18.1 to 21.7% and the grade from 18.1 to 19.9% includes most number of accessions as 152 and 4 accessions exhibited amylose content between 20.5 to 21.7%. The optimal performance calibration model could be obtained from original spectra of brown rice using MPLS (Modified Partial Least Squares) with the correlation coefficients ($r_2$) for amylose and protein content were 0.865 and 0.786, respectively. The standard errors of calibration (SEC) exhibited good statistic values: 2.078 and 0.442 for amylose and protein contents, respectively. All these results suggest that NIR spectroscopy may serve as reputable and rapid method for quantification of brown rice protein and amylose contents in large numbers of rice germplasm.

Application of Amplitude Demodulation to Acquire High-sampling Data of Total Flux Leakage for Tendon Nondestructive Estimation (덴던 비파괴평가를 위한 Total Flux Leakage에서 높은 측정빈도의 데이터를 획득하기 위한 진폭복조의 응용)

  • Joo-Hyung Lee;Imjong Kwahk;Changbin Joh;Ji-Young Choi;Kwang-Yeun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.17-24
    • /
    • 2023
  • A post-processing technique for the measurement signal of a solenoid-type sensor is introduced. The solenoid-type sensor nondestructively evaluates an external tendon of prestressed concrete using the total flux leakage (TFL) method. The TFL solenoid sensor consists of primary and secondary coils. AC electricity, with the shape of a sinusoidal function, is input in the primary coil. The signal proportional to the differential of the input is induced in the secondary coil. Because the amplitude of the induced signal is proportional to the cross-sectional area of the tendon, sectional loss of the tendon caused by ruptures or corrosion can be identified by the induced signal. Therefore, it is important to extract amplitude information from the measurement signal of the TFL sensor. Previously, the amplitude was extracted using local maxima, which is the simplest way to obtain amplitude information. However, because the sampling rate is dramatically decreased by amplitude extraction using the local maxima, the previous method places many restrictions on the direction of TFL sensor development, such as applying additional signal processing and/or artificial intelligence. Meanwhile, the proposed method uses amplitude demodulation to obtain the signal amplitude from the TFL sensor, and the sampling rate of the amplitude information is same to the raw TFL sensor data. The proposed method using amplitude demodulation provides ample freedom for development by eliminating restrictions on the first coil input frequency of the TFL sensor and the speed of applying the sensor to external tension. It also maintains a high measurement sampling rate, providing advantages for utilizing additional signal processing or artificial intelligence. The proposed method was validated through experiments, and the advantages were verified through comparison with the previous method. For example, in this study the amplitudes extracted by amplitude demodulation provided a sampling rate 100 times greater than those of the previous method. There may be differences depending on the given situation and specific equipment settings; however, in most cases, extracting amplitude information using amplitude demodulation yields more satisfactory results than previous methods.