• Title/Summary/Keyword: noncompetitive inhibition

Search Result 74, Processing Time 0.025 seconds

Inhibitors of Tyrosinase and Melanogenesis from Galla rhois

  • Kim, Hyo-Jin;Jang, Dong-Il;Park, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.4
    • /
    • pp.285-290
    • /
    • 1997
  • Previously, a 50% aqueous methanol extract of Galla rhois was shown to be the most potent tyrosinase inhibition activity with an {TEX}$IC_{50}${/TEX}(the concentration causing 50% inhibition of tyrosinase activity) of 0.2mg/ml of 205 crude drug extracts. To isolate tyrosinase inhibitors, the methanol extract was evaporated to a small volume in vacuo, and then partitioned stepwise with benzene and ethyl acetate(EtOAc). the EtOAc fraction was solubilized in 10% MeOH solution, and then fractionated successively by Diaion HP-20 and Sephadex LH-20 column chromatography, and preparative HPLC. Three phenolic compounds were isolated, and characterized as gallic acid(GA), methyl gallate(MG) and 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose(PGG) by UV, IR, {TEX}${1}^H${/TEX}-&{TEX}${13}^C${/TEX}-NMR, and FAB-MS spectroscopy, PGG({TEX}$IC_{50}${/TEX}=50$\mu\textrm{g}$/ml) showed a considerable inhibitory effect against mushroom tyrosinase, while GA({TEX}$IC_{50}${/TEX}=1.6mg/ml) and MG({TEX}$IC_{50}${/TEX}=234$\mu\textrm{g}$/ml) did not show an appreciable effect. Meanwhile, MG inhibited greatly melanogenesis in a murine melanocyte cell line, Mel-Ab. MG and PGG showed typical noncompetitive inhibition patterns against mushroom tyrosinase. These results suggest that PGG and MG may be potentially useful as either anti-browning or anti-melanogenic agents in foods and cosmetics.

  • PDF

Development of Cholinesterase Inhibitors using 1-Benzyl Piperidin-4-yl (α)-Lipoic Amide Molecules

  • Lee, Seung-Hwan;Kim, Beom-Cheol;Kim, Jae-Kwan;Lee, Hye Sook;Shon, Min Young;Park, Jeong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1681-1686
    • /
    • 2014
  • A series of hybrid molecules between (${\alpha}$)-lipoic acid (ALA) and 4-amino-1-benzyl piperidines were synthesized and their in vitro cholinesterase (acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)) inhibitory activities were evaluated. Even though the parent compounds did not exhibit any inhibitory activity against cholinesterase (ChE) with the exception of compound 14 ($IC_{50}=255.26{\pm}4.41$ against BuChE), all hybrid molecules demonstrated BuChE inhibitory activity. Some hybrid compounds also displayed AChE inhibitory activity. Specifically, compound 17 was shown to be an effective inhibitor against both AChE ($IC_{50}=1.75{\pm}0.30{\mu}M$) and BuChE ($IC_{50}=5.61{\pm}1.25{\mu}M$) comparable to galantamine ($IC_{50}=1.7{\pm}0.9{\mu}M$ against AChE and $IC_{50}=9.4{\pm}2.5{\mu}M$ against BuChE). Inhibition kinetic studies using compound 17 indicated a mixed inhibition type for AChE and a noncompetitive inhibition type for BuChE. Its binding affinity ($K_i$) values to AChE and BuChE were $3.8{\pm}0.005{\mu}M$ and $7.0{\pm}0.04{\mu}M$, respectively.

Characteristics of Tyrosinase Inhibitory Extract from Ecklonia stolonifera

  • Park Douck-Choun;Ji Cheong-Il;Kim Sang-Ho;Jung Kyoo-Jin;Lee Tae-Gee;Kim In-Soo;Park Yeung-Ho;Kim Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.3_4
    • /
    • pp.195-199
    • /
    • 2000
  • Tyrosinase inhibitory activities of 14 kinds of seaweed, Ecklonia stolonifera, Ecklonia cava, Undaria pinnatiflda, Laminaria japonica, Sargassum fulvellum, Sargassum miyabei, Sargassum thunbergii, Porphyra yezoensis, Gracilaria verrucosa, Carpopeltis affinis, Pachymeniopsis elliptica, Gelidium amansii, Codium fragile and Ulva pertusa were determined using commercially available mushroom tyrosinase in an in vitro assay system. The $1\%$ (w/v) methanol extract from E. stolonifera showed the highest tyrosinase inhibitory activity of $79.0\%$, electron donating activity of $79.0\%$ and total phenol content of 3.75 mg/100g. Ethyl acetate-methanol-water (7 : 2 : 0.2, v/v) fraction $(0.5\%,\;w/v)$ isolated from the methanol extract showed tyrosinase inhibitory activity of $75.9 \%$, electron donating activity of $88.1 \%$ and total phenol content of 4.38 mg/100g. Tyrosinase inhibitory activity was closely associated with total phenol content (R = 0.99) and electron donating activity (R=0.99). Maximum absorption wavelength of the fraction was 218nm and that of phenolic compounds showed about a range from 210 to 220nm. The inhibition mode of the fraction was noncompetitive inhibition.

  • PDF

Potent Inhibition of Human Cytochrome P450 1 Enzymes by Dimethoxyphenylvinyl Thiophene

  • Lee, Sang-Kwang;Kim, Yongmo;Kim, Mie-Young;Kim, Sanghee;Chun, Young-Jin
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • Cytochrome P450 (P450) 1 enzymes such as P450 1A1, 1A2, and 181 are known to be involved in the oxidative metabolism of various procarcinogens and are regarded as important target enzymes for cancer chemoprevention. Previously, several hydroxystilbene compounds were reported to inhibit P450 1 enzymes and were rated as candidate chemopreventive agents. In this study, we investigated the inhibitory effect of 2-[2-(3,5-dimethoxyphenyl)vinyl]-thiophene (DMPVT), produced from the chemical modification of oxyresveratrol, on the activities of P450 1 enzymes. The inhibitory potential by DMPVT on the P450 1 enzyme activity was evaluated with the Escherichia coli membranes of the recombinant human cytochrome P450 1A1, 1A2, or 1B1 coexpressed with human NADPH-P450 reductase. DMPVT significantly inhibited ethoxyresorufin O-deethylation (EROD) activities with $IC_{50}$ values of 61, 11, and 2 nM for 1A1, 1A2, and 1B1, respectively. The EROO activity in OMBA-treated rat lung microsomes was also significantly inhibited by OMPVT in a dose-dependent manner. The modes of inhibition by DMPVT were non-competitive for all three P450 enzymes. The inhibition of P450 1B1-mediated EROD activity by OMPVT did not show the irreversible mechanism-based effect. The loss of EROD activity in P450 1B1 with OMPVT incubation was not blocked by treatment with the trapping agents such as glutathione, N-acetylcysteine, or dithiothreitol. Taken together, the results suggested DMPVT to be a strong noncompetitive inhibitor of human P450 1 enzymes that should be considered as a good candidate for a cancer chemopreventive agent in humans.

Inhibitory Effects of Human Glutamate Dehydrogenase Isozymes by Antipsychotic Drugs for Schizophrenia (정신분열증 치료제에 의한 사람 글루탐산염 탈수소효소 동종효소의 억제효과)

  • Nam, A-Reum;Kim, In-Sik;Yang, Seung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.152-158
    • /
    • 2016
  • Glutamate is one of the major excitatory neurotransmitters in the central nervous system of vertebrates. Human GDH (hGDH) is the enzyme that regulates the glutamate metabolism and its expression is higher in the brains of schizophrenia patients than in normal subjects. This study examined the changes in the hGDH enzymatic activity caused by antipsychotic drugs (haloperidol, risperidone, (${\pm}$)-sulpride, chlopromazine hydrochloride, melperone, (${\pm}$)butaclamol, domperidone, clozapine) related to schizophrenia. First of all, hGDH isozymes (hGDH1, hGDH2) were synthesized by genetic recombination. As a result of the enzyme assay, haloperidol, (${\pm}$)-sulpride, melperone and clozapine had an inhibitory effect on the hGDH isozymes. In addition, haloperidol showed a non-competitive inhibition against the substrate, 2-oxoglutarate. In contrast, it showed an uncompetitive inhibition against another substrate, NADH. The inhibitory effect of haloperidol on hGDH2 was abolished by the presence of L-leucine, an allosteric effector of hGDH, but by not other antipsychotic drugs. These results revealed the inhibition of enzyme activity by psychotropic drugs in hGDH isoenzymes (hGDH1 and hGDH2) and the possibility that haloperidol may be used to regulate the GDH activity and glutamate concentration in the central nervous system.

The Physicochemical Properties of $\alpha$-Amylase Inhibitors from Black Bean and Naked Barey in Korea (한국산 검정콩 및 쌀보리 $\alpha$-Amylase 저해물질의 이화학적 특성)

  • 심기환;문주석;배영일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.367-375
    • /
    • 1998
  • The physicochemical properties of the $\alpha$-amylase inhibitors from black bean and naked barley is Korea were investigated. Preincubation time for maximum inhibition was 30min and no activity change was seen after that time. Optimum pH of the $\alpha$-amylase inhibitors from the black bean and naked barley was pH 7.0 and the inhibitory activities were stable in the range of pH 6.0~8.0 in both phosphate and Tris-HCI buffer solutions. Both inhibitors maintained more than 50% of activity after incubation for 17 min at 7$0^{\circ}C$. The inhibitors from the black bean and naked barley maintained more than 50% of activities after treatment for 40 min and 30 min with pepsin, and 30 min and 50 min with trypsin, respectively. Both inhibitors functioned via a noncompetitive mechanism and were active against porcine pancreatic and human salivary $\alpha$-amylases. The activities of both inhibitors were linear for the ionic stength ranging from 0 to 0.9. The addition of 70 mM maltose to the reaction mixture caused a maximum increase in the relative activities of both inhibitors, but it did not affect the dissociation of the EI complex. The activities of both inhibitors were significantly enhanced by adding 1mM of K+ or Mg2+.

  • PDF

The Kinetic Investigation of D-Hydroxyisovalerate Dehydrogenase from Fusarium sambucinum

  • Lee, Chan;Goerisch, Helmut;Zocher, Rainer
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.228-233
    • /
    • 2000
  • The steady-state investigation of the mechanism of Dhydroxyisovalerate dehydrogenase was performed in order to understand this type of kinetic patterns. The initial velocity was measured with various amounts of both substrates, NADPH and 2-ketoisovalerate. Double reciprocal plots gave patterns that conversed on or near the abscissa. Binding studies indicated that NADPH bound first to the enzyme. The product $NADP^+$ was found to be a competitive inhibitor with respect to NADPH at a constant concentration of 2-ketoisovalerate. However, it showed noncompetitive inhibition against 2-ketoisovalerate at a fixed amount of NADPH. Another product, D-hydroxyisovalerate, was a non-competitive inhibitor versus NADPH and 2-ketoisovalerate at constant levels of 2-ketoisovalerate and NADPH, respectively. These results were comparable with an ordered bi-bi mechanism, in which NADPH bound first to the enzyme, followed by the binding of 2- ketoisovalerate. $NADP^+$ is the last product to be released. The ordered reaction manner of D-hydroxyisovalerate dehydrogenase from 2-ketoisovalerate to D-hydroxyisovalerate allows the accurate regulation of valine metabolism and it may lead to the regulation of total biosynthesis of enniatins in the Fusarium species.

  • PDF

Identification of a lead small-molecule inhibitor of anthrax lethal toxin by using fluorescence-based high-throughput screening

  • Wei, Dong;Bu, Zhaoyun;Yu, Ailian;Li, Feng
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.811-815
    • /
    • 2011
  • Inhalational anthrax is caused by B. anthracis, a virulent sporeforming bacterium which secretes anthrax toxins consisting of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease and is the main determinant in the pathogenesis of anthrax. Here we report the identification of a lead small-molecule inhibitor of anthrax lethal factor by screening an available synthetic small-molecule inhibitor library using fluorescence-based high-throughput screening (HTS) approach. Seven small molecules were found to have inhibitory effect against LF activity, among which SM157 had the highest inhibitory activity. All theses small molecule inhibitors inhibited LF in a noncompetitive inhibition mode. SM157 and SM167 are from the same family, both having an identical group complex, which is predicted to insert into S1' pocket of LF. More potent small-molecule inhibitors could be developed by modifying SM157 based on this identical group complex.

Anti-Candida Activity of YH-1715R, a New Triazole Derivative

  • Park, Kang-Sik;Kang, Heui-Il;Lee, Jong-Wook;Paik, Young-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.693-697
    • /
    • 2004
  • YH-1715R, (2R,3R)-2-(2,4-difluorophenyl)-3-(3-methoxy-1,2,4-isothiazol-3-yl-thio)-1-( 1H-1,2,4-triazol-l-yl)-2-butanol, a new triazole derivative obtained by the structural modification of fluconazole, was found to exhibit potent anti-Candida activity against a wide variety of Candida albicans (C. albicans) (MIC: 0.4-12.5 mg/l). To investigate the mode of action of YH-1715R, its effect on ergosterol biosynthesis in cell-free extracts and whole cells of C. albicans was examined. The inhibitory activity of YH-1715R was approximately ten-fold higher than that of fluconazole. To determine the primary action mechanism of YH-1715R, its inhibitory activity against lanosterol $14\alpha$-demethylase (14$\alpha$-DM), a major target for azole, was measured using gas-liquid chromatography. YH-1715R and fluconazole were found to inhibit 14a-DM with an $IC_{50}$ of 0.015 $\mu$M and 0.01$8\mu$M, respectively, plus the mode of inhibition of YH-1715R and fluconozole was noncompetitive with a $K_i$ of 0.0533$\mu$M and 0.0975$\mu$M.

Inhibitory Activity of Amentoflavone on Arachidonic Acid Releasing Enzyme, Phopholipase $A_2$ and Inhibition of Histamine Release from Mast Cells (Amentoflavone의 아라키돈산 유리효소인 phopholipase $A_2$에 대한 저해활성 및 비만세포에서 histamine 유리 억제효과)

  • Moon, Tae-Chul;Lee, Eun-Kyung;Lee, Sung-Ho;Son, Kun-Ho;Kim, Hyun-Pyo;Kang, Sam-Sik;Chang, Hyeun-Wook
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.1 s.128
    • /
    • pp.49-52
    • /
    • 2002
  • Amentoflavone, naturally occurring biflavonoid, isolated from the leaves of Ginko biloba, selectively inhibited human seceretory phospholipase $A_2$. This compound potently and irreversibly inhibited human group IIA in a dose dependent manner with an $IC_50$ about $3\;{\mu}M$. Amentoflavone inhibited phospholipase $A_2$ by a noncompetitive manner with the apparent Ki value of $1{\times}10^{-5}M$. In addition, the inhibitory activity of amentoflavone is rather specific against group IIA phospholipase $A_2$ than group IB phospholipase $A_2$. Furthermore, this compound strong inhibit histamine release from $A_{23187}$ treated rat peritoneal mast cells. These results indicate naturally occurring biflavonoid represents a novel anti-inflammatory agent.