• Title/Summary/Keyword: non-uniform thickness

Search Result 246, Processing Time 0.029 seconds

Analysis of AC Breakdown Voltage accoding to epoxy thickness of Composite Insulation for Dry-Air/Epoxy under non-uniform electric field (불평등전계에서의 건조공기/에폭시 복합절연물의 에폭시 두께에 따른 AC 파괴전압 분석)

  • Heo, Jun;Lee, Seung-Su;Lim, Kee-Joe;Jung, Hae-Eun;Kang, Seong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.113-114
    • /
    • 2008
  • The purpose of this paper is to analyze AC Breakdown of solid/air composite insulation depending on the thickness and the pressure of dry air for eco-friendly insulation. SF6 gas has been widely used in electric equipment as gas insulation because of high dielectric strength and arc extinguishing performance. However, because SF6 gas is one of the green house effect gases, alternative insulation such as SF6 mixture, extremely low temperature gas, vacuum, liquid and solid insulating are being investigated.

  • PDF

Development of Prediction Model for Sidewall Curl in Sheet Metal Forming(I)-Analytical Model (박판성형시 컬 예측모델 개발(I)-해석적 모델)

  • Joo, B.D.;Park, H.K.;Kim, D.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.432-437
    • /
    • 2007
  • Sidewall curl is the curvature that results from non-uniform through-thickness strain present in the sheet stamping process which involves material flow over a die radius. In order to understand and control sidewall curl for tight fit-up tolerances, an analytical model that can provide a reliable measure for the amount of curl would be very helpful. In this study, a model is developed based on the moment-curvature relationship during bending-under-tension operations. The analytical model includes the variables of applied tensile force, the yield strength, the elastic modulus, the bending radius, and the sheet thickness, which are the primary factors affecting sidewall curl during sheet stamping operations. For the accuracy of analytical model, six possible deformation patterns are proposed on the basis of material properties and bending geometries.

The effect of hydrogen flow rate on defects and thickness uniformity in graphene (수소량에 따른 그라핀의 두께와 결함 변화)

  • An, Hyo-Sub;Kim, Eun-Ho;Jang, Hyun-Chul;Cho, Won-Ju;Lee, Wan-Kyu;Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.262-262
    • /
    • 2010
  • To investigate the effect of the amount of hydrogen on CVD grown-graphene, the flow rate of hydrogen was changed, while other process parameters were kept constant during CVD synthesis. Substrate which consists of 300nm-nickel/$SiO_2$/Si substrate, and methane gas mixed with hydrogen and argon were used for CVD growth. Graphene was synthesized at $950^{\circ}C$. The thickness and the defect of graphene were analyzed using raman spectroscopy. The synthesized graphene shows non-uniform and more defective below a certain amount of hydrogen.

  • PDF

Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady High Temperature and External Excitation (고온에서 외부 가진력을 받는 회전하는 경사기능 박간 블레이드의 동적응답 해석)

  • Na Sunsoo;Oh Byungyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.976-982
    • /
    • 2005
  • This paper is dedicated to the thermoelastic modeling and dynamic response of the rotating blades made of functionally graded ceramic-metal based materials. The blades are modeled as non-uniform thin walled beams fixed at the hub with various selected values of setting angles and pre-twisted angles. In this study, the blade is rotating with a constant angular velocity and exposed to a steady temperature field as well as external excitation. Moreover, the effect of the temperature gradient through the blade thickness is considered. Material properties are graded in the thickness direction of the blade according to the volume fraction power law distribution. The numerical results highlight the effects of the volume fraction, temperature gradient, taper ratio, setting angle and pre-twisted angle on the dynamic response of bending-bending coupled beam characteristics and pertinent conclusions are outlined.

Elastohydrodynamic Lubrication Analysis in Hydraulic Vane Pump (유압 베인 펌프에서의 탄성유체윤활 해석)

  • Park, T.J.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.7-13
    • /
    • 2013
  • Hydraulic vane pumps are widely used in various hydraulic systems because of its compactness and light weight. It is well known that the vanes and cam ring are separated by very thin liquid films which result in the EHL state. Contrary to the case of cylindrical roller bearings, the inlet and side boundary pressures are much higher than the atmospheric pressure. In this paper, a numerical solution of the EHL of finite line contacts between the cam ring and vane tip with profiled ends is presented. Using a finite difference method with non-uniform grids and the Newton-Raphson method, converged solutions are obtained for moderate load and material parameters. The EHL pressure distribution and film shape are considerably affected by pump delivery pressure and the side boundary condition applied. Both the maximum pressure and the minimum film thickness always occurred near the edge regions. The present results can be used in the design of optimum vane profile in hydraulic vane pump.

An Experimental Study on Optimization of Blank Shape in Elliptical Deep Drawing Process (타원형 디프 드로잉 공정에서 블랭크 형상 최적화에 관한 실험적 연구)

  • Park, Dong-Hwan;Choi, Byung-Keun;Park, Sang-Bong;Kang, Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.101-108
    • /
    • 1999
  • Most of researches for deep drawing process have been performed on the formability of axisymmetric blank, but there is an insufficient study on the formability of non-axisymmetric blank. In addition, the conventional blank shape has been determined by the trial-and-error method using industrial experience and post processing test. Therefore only approximated shape of the blank can be presented. In this study, the optimal blank shape and concrete drafting method in deep drawing process with biaxisymmetric elliptical shape is proposed. Through the deep drawing experiment, it is found that the optimal blank shape gives the most uniform thickness of the products in the first process

  • PDF

Growth of frost formed on heat exchanger fins (열교환기 휜에서의 서리 성장)

  • An, Won-Jun;Kim, Jung-Soo;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.256-261
    • /
    • 2008
  • In this study, frost behavior on two dimensional fins of a heat exchanger was experimentally investigated. Temperature distribution on a 2-D fin surface and frost properties were measured in the directions perpendicular to and parallel to airflow. The results indicated that the temperature gradient in the direction perpendicular to airflow was large because of fin heat conduction, while that in the direction parallel to airflow was very small. Frost thickness in the airflow direction decreased from the leading edge towards the trailing edge of the fin due to leading edge effect. The reduction rate of frost thickness in the airflow direction, however, was very small compared with that in the direction perpendicular to the airflow, as affected by the temperature distribution.

  • PDF

THE EFFECT OF OVER AND UNDERLAYER ON THE MAGNETORESISTANCE IN Co-Ag NANO-GRANULAR ALLOY FILMS

  • Kim, Yong-Hyuk;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.451-455
    • /
    • 1995
  • The composition and thickness dependence and the ferromagnetic under- and overlayer effect on the magnetoresistance ratio and saturation field of the Co-Ag nano-granular films were investigated. The maximum magnetoresistance (23% at R.T.) in the as-deposited state was obtained in the $3000{\AA}$ $Co_{30} Ag_{70}$ bare alloy film. As the thickness of the alloy films decreased below $500{\AA}$, the MR ratio decreased because of the resistivity increase and the non-uniform film formation. We showed that the ferromagnetic over- and underlayer could reduce the saturation field of the nano-granular films via exchange coupling effect. The magnetoresistance and the saturation field of the $100{\AA}$ alloy film were 3.65 % and 2.85 kOe respectively and those of the under- and overlayered alloy films with $200{\AA}$ Fe were 3.3 % and 1.23 kOe respectively.

  • PDF

Axisymmetric large deflection analysis of fully and partially loaded shallow spherical shells

  • Altekin, Murat;Yukseler, Receb F.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.559-573
    • /
    • 2013
  • Geometrically non-linear axisymmetric bending of a shallow spherical shell with a clamped or a simply supported edge under axisymmetric load was investigated numerically. The partial load was introduced by the Heaviside step function, and the solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for three geometrical parameters. The accuracy of the algorithm was checked by comparing the central deflection, the radial membrane stress at the edge, or the transverse shear force with the solutions of plates and shells in the literature and good agreement was obtained. The main findings of the study can be outlined as follows: (i) If the shell is fully loaded the central deflection of a clamped shell is larger than that of a simply supported shell provided that the shell is not very shallow, (ii) if the shell is partially loaded the central deflection of the shell is sensitive to the parameters of thickness, depth, and partial loading but the influence of the boundary conditions is negligible.

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.