• Title/Summary/Keyword: non-thermal treatment

Search Result 279, Processing Time 0.032 seconds

Influences of Cold and Thermal Therapy on ILs and VEGF Expression after Muscle Contusion in Rats (온냉치료가 근타박 유발 흰쥐의와 발현에 미치는 ILs와 VEGF 발현에 미치는 영향)

  • Heo, Gwang-Ho;Bang, Hyun-Soo;Park, Soo-Jin;Ahn, Ji-Hyun;Lee, Hyun-Min;Choen, Song-Hee;Kim, Jin-Sang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Purpose : The purpose of this study was to evaluate the effects of cold therapy and thermal therapy, and immunoreactivity of vascular endothelial growth factor(VEGF), Interleukin-1(IL-1) and Interleukin-6(IL-6) on angiogenesis after muscle contusion injury. Methods : Muscle contusion injury was induced in the gastronemius muscle by dropping a metal bead(22.8g). Cold and thermal theraphy was applied immediately and directly to the skin of injured muscle daily for three days. (experimental group-1 : $5^{\circ}$ cold pack, experimental group-2 : $50^{\circ}$ hot pack, control group non applied, treatment time : 10minutes) Results : The experimental group-1 and 2 showed higher immunoreactivity of VEGF, IL-1, IL-6 than control group during 3 days(P<0.05). And the experimental group-2 showed higher than the experimental group-1 especially VEGF(P<0.05). Conclusion : There data thermal therapy was more effective than cold therapy in the acute muscle contusion injury.

  • PDF

Effects of Covering Materials and Methods on Heat Insulation of a Plastic Greenhouse and Growth and Yield of Tomato (플라스틱하우스의 보온피복 재료 및 방법이 보온력과 토마토의 생육 및 수량에 미치는 영향)

  • Kwon Joon Kook;Lee Jae Han;Kang Nam Jun;Kang Kyung Hee;Choi Young Hah
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.251-257
    • /
    • 2004
  • This experiment was carried out to investigate the effects of different covering materials and methods on heat insulation of a plastic greenhouse, growth and yield of tomato. Night air and soil temperatures in a double-layer greenhouse with external multifold thermal cover (MTC; eight-ounce cassimere+four-fold polyform+double-fold non-woven fabric+single-fold polypropylene covering were about $1^{\circ}C$ lower than in that with internal MTC covering, but about $3^{\circ}C$ higher than in that with an EVA film screen. Tomato yield in the external MTC covering increased by $2\%\;and\;19\%$ as compared to that in the internal MTC covering and the non-covering of MTC, respectively, due to its high light transmission and insulation effect. Night air temperatures in a double-layer greenhouse with external MTC covering and with thermal screen (polyester plus aluminium) were $2.2^{\circ}C\;and\;4.5^{\circ}C$ higher than those in a double-layer greenhouse with an external MTC covering and in a double-layer greenhouse equipped an EVA film screen, respectively. Tomato yield in the treatment with external MTC covering and a thermal screen was $18\%\;and\;37\%$ greater than that in the external MTC covering and in an EVA film screen, respectively. Results indicate that tomato could be grown without heating or with minimal heating in a double-layer greenhouse covered with MTC and a thermal screen during the winter season in sourthern regions of Korea.

Physiological Changes of Saccharomyces cerevisiae by High Voltage Pulsed Electric Field Treatments (고전압 펄스 전기장 처리에 의한 Saccharomyces cerevisiae의 생리적 변화)

  • Park, Hee Ran;Yoon, So Jung;Park, Han-Sul;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.590-597
    • /
    • 2013
  • High voltage pulsed electric fields (PEF) treatment is a promising non-thermal processing technology that can replace or partially substitute for thermal processes. The aim of this research was to investigate the microbial inactivation mechanisms by PEF treatment in terms of physiological changes to Saccharomyces cerevisiae. PEF was applied at the electric field strength of 50 kV/cm, treatment time of 56 ${\mu}s$ and temperature of $40^{\circ}C$. The microbial cells treated with PEF showed loss of salt tolerance on the cell membrane and collapse of the relative pH gradient on in-out of cells. Cell death or injury resulted from the breakdown of homeostasis, decreased $H^+$-ATPase activity, and loss of glycolysis activity.

Development and Fabrication of Heating and Water Sparging Remediation System (HWSRS) for DNAPL-contaminated Groundwater Treatment

  • Lee, Ju-Won;Park, Won-Seok;Gong, Hyo-Young;Lee, Ae-Ri;Kim, Da-Eun;Baek, Seung-Chon;Lee, Jong-Yeol
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.32-37
    • /
    • 2013
  • The scope of this study was to develop, design, and build an ex-situ remediation system of using the heating and water sparging treatment for the highly volatile DNAPL (Dense Non-Aqueous Phase Liquid) contaminated groundwater, and to conduct pilot testing at the site contaminated with DNAPL. The TCE (Trichloroethylene) removal was at the highest rate of 94.6% with the water sparging at $70^{\circ}C$ in the lab-scale test. The pilot-scale remediation system was developed, designed, and fabricated based on the results of the lab-scale test conducted. During the pilot-scale testing, DNAPL-contaminated groundwater was detained at heat exchanger for the certain period of time for pre-heating through the heat exchanger using the thermal energy supplied from the heater. The heating system supplies thermal energy to the preheated DNAPL-contaminated groundwater directly and its highly volatile TCE, $CCl_4$ (Carbontetrachloride), Chloroform are vaporized, and its vaporized and treated water is return edback to the heat exchanger. In the pilot testing the optimum condition of the HWSRS was when the water temperature at the $40^{\circ}C$ and operated with water sparging concurrently, and its TCE removal rate was 90%. The efficiency of the optimized HWSRS has been confirmed through the long-term performance evaluation process.

SURFACE CHARACTERISTICS AND BIOACTIVITY OF ANODICALLY OXIDIZED TITANIUM SURFACES (양극산화에 의한 티타늄 산화막의 표면 특성 및 생체 활성에 관한 연구)

  • Lee, Sang-Han;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.85-97
    • /
    • 2007
  • Statement of problem: Recently, anodic oxidation of cp-titanium is a popular method for treatment of titanium implant surfaces. It is a relatively easy process, and the thickness, structure, composition, and the microstructure of the oxide layer can be variably modified. Moreover the biological properties of the oxide layer can be controlled. Purpose: In this study, the roughness, microstructure, crystal structure of the variously treated groups (current, voltage, frequency, electrolyte, thermal treatment) were evaluated. And the specimens were soaked in simulated body fluid (SBF) to evaluate the effects of the surface characteristics and the oxide layers on the bioactivity of the specimens which were directly related to bone formation and integration. Materials and methods: Surface treatments consisted of either anodization or anodization followed thermal treatment. Specimens were divided into seven groups, depending on their anodizing treatment conditions: constant current mode (350V for group 2), constant voltage mode (155V for group 3), 60 Hz pulse series (230V for group 4, 300V for group 5), and 1000 Hz pulse series (400V for group 6, 460V for group 7). Non-treated native surfaces were used as controls (group 1). In addition, for the purpose of evaluating the effects of thermal treatment, each group was heat treated by elevating the temperature by $5^{\circ}C$ per minute until $600^{\circ}C$ for 1 hour, and then bench cured. Using scanning electron microscope (SEM), porous oxide layers were observed on treated surfaces. The crystal structures and phases of titania were identified by thin-film x-ray diffractmeter (TF-XRD). Atomic force microscope (AFM) was used for roughness measurement (Sa, Sq). To evaluate bioactivity of modified titanium surfaces, each group was soaked in SBF for 168 hours (1 week), and then changed surface characteristics were analyzed by SEM and TF-XRD. Results: On basis of our findings, we concluded the following results. 1. Most groups showed morphologically porous structures. Except group 2, all groups showed fine to coarse convex structures, and the groups with superior quantity of oxide products showed superior morphology. 2. As a result of combined anodization and thermal treatment, there were no effects on composition of crystalline structure. But, heat treatment influenced the quantity of formation of the oxide products (rutile / anatase). 3. Roughness decreased in the order of groups 7,5,2,3,6,4,1 and there was statistical difference between group 7 and the others (p<0.05), but group 7 did not show any bioactivity within a week. 4. In groups that implanted ions (Ca/P) on the oxide layer through current and voltage control, showed superior morphology, and oxide products, but did not express any bioactivity within a week. 5. In group 3, the oxide layer was uniformly organized with rutile, with almost no titanium peak. And there were abnormally more [101] orientations of rutile crystalline structure, and bonelike apatite formation could be seen around these crystalline structures. Conclusion: As a result of control of various factors in anodization (current, voltage, frequency, electrolytes, thermal treatment), the surface morphology, micro-porosity, the 2nd phase formation, crystalline structure, thickness of the oxide layer could be modified. And even more, the bioactivity of the specimens in vitro could be induced. Thus anodic oxidation can be considered as an excellent surface treatment method that will able to not only control the physical properties but enhance the biological characteristics of the oxide layer. Furthermore, it is recommended in near future animal research to prove these results.

Cryogenic fracture behaviors and polarization characteristics according to sensitizing heat treatment on structural material of the nuclear fusion reactor (핵 융합로 구조재료의 예민화 열처리에 따른 극저온 파괴거동 및 분극특성)

  • Kwon, Il-Hyun;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.311-320
    • /
    • 1998
  • The cryogenic fracture behaviors of austenitic stainless steel HN2 developed for nuclear fusion reactor were evaluated quantitatively by using the small punch(SP) test. The electrochemical polarization test was applied to study thermal aging degradation of HN2 steel. The X-ray diffraction(XRD) analysis was conducted to detect carbides and nitrides precipitated on the grain boundary of the heat treated HN2 steel. The mechanical properties of the HN2 steel significantly decreased with increasing time and temperature of heat treatment or with decreasing testing temperature. The integrated charge(Q) obtained from electrochemical polarization test showed a good correlation with the SP energy(ESP) obtained by means of SP tests. From the results observed in the x-ray diffraction and anodic polarization curve, it was known that the material the grain boundary. Combining SP test and electrochemical polarization test, it could be useful tools to non-destructively evaluate the cryogenic fracture behaviors and the aging degradation for cryogenic structural material.

Study on Reactive Non-thermal Plasma Process combined with Metal Oxide Catalyst for Removal of Dilute Trichloroethylene

  • Han Sang-Bo;Oda Tetsuji;Park Jae-Youn;Park Sang-Hyun;Koh Hee-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.292-300
    • /
    • 2006
  • In order to improve energy efficiency in the dilute trichloroethylene removal using the nonthermal plasma process, the barrier discharge treatment combined with manganese dioxide was experimentally studied. Reaction kinetics in this process was studied on the basis of final byproducts distribution. Decomposition efficiency was improved to about $99\;\%$ at the specific energy of 40 J/L with passing through manganese dioxide. C=C ${\pi}$ bond cleavage of TCE substances gave DCAC, which has the single bond of C-C through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were broken easily in the subsequent catalytic reaction due to the weak bonding energy about $3{\sim}4\;eV$ compared with the double bonding energy in TCE molecules. Oxidation byproducts of DCAC and TCAA from TCE decomposition are generated from the barrier discharge plasma treatment and catalytic surface chemical reaction, respectively. Complete oxidation of TCE into COx is required to about 400 J/L, but $CO_2$ selectivity remains about $60\;\%$.

Reaction Kinetics and Dependence of Energy Efficiency in the Dilute Trichloroethylene Removal by Non-thermal Plasma Process combined with Manganese Dioxide

  • Han, Sang-Bo;Oda, Tetsuji;Park, Jae-Youn;Koh, Hee-Seok;Park, Sang-Hyun;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.552-553
    • /
    • 2005
  • In order to improve energy efficiency in the dilute trichloroethylene removal using the nonthermal plasma process, the barrier discharge treatment combined with manganese dioxide was experimentally studied. Reaction kinetics in this process was studied on the basis of final byproducts distribution. Decomposition efficiency was improved to about 99% at the specific energy 40J/L with passing through manganese dioxide. C=C $\pi$ bond cleavage in TCE gave DCAC (single bond, C-C) through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were broken easily in the subsequent catalytic reaction due to the weak bonding energy about 3 ~ 4 eV compared with the double bonding energy in TCE molecules. Oxidation byproducts of DCAC and TCAA from TCE decomposition are generated from the barrier discharge plasma treatment and catalytic surface chemical reaction, respectively. Complete oxidation of TCE into $CO_X$ is required to about 400J/L.

  • PDF

Synthesis of Potassium Hexatitanate with Non-Fibrous Shape as a Raw Material for Friction Material in Brake System (자동차 브레이크 마찰재용 비침상형 육티탄산칼륨의 합성 연구)

  • Lee, Jung Ju;Lee, Na-Ri;Pee, Jae-Hwan;Kim, Jong-Young;Kim, Jeong-Joo
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.132-136
    • /
    • 2017
  • We synthesized potassium hexatitanate, ($K_2Ti_6O_{13}$, PT6), with a non-fibrous shape, by acid leaching and subsequent thermal treatment of potassium tetratitanate ($K_2Ti_4O_9$, PT4), with layered crystal structure. By controlling nucleation and growth of PT4 crystals, we obtained splinter-type crystals of PT6 with increased width and reduced thickness. The optimal holding temperature for the layered PT4 was found to be ${\sim}920^{\circ}C$. The length and width of the PT4 crystals were increased when the nucleation and growth time were increased. After a proton exchange reaction using aqueous 0.3 M HCl solution, and subsequent heat treatment at $850^{\circ}C$, the PT4 crystal transformed into splinter-type PT6 crystals. The frictional characteristics of the friction materials show that as the particle size of PT6 increases, the coefficient of friction (COF) and wear amounts of both the friction materials and counter disc increase.

Change of the Moisture and Temperature in Planting Ground as Effected by Different Soil Thickness, Soil Mixture Ratios and Ground Cover Plants in the Green Roof System (옥상녹화에서 토심, 토양배합비 및 지피식물에 따른 식재지반 수분 및 온도변화)

  • Ju, Jin Hee;Yoon, Young Han
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.11-16
    • /
    • 2010
  • This paper has attempted to investigate the change in soil moisture volume and temperature of architecture by planting ground(soil thickness and soil mixture ratio) and ground cover plants(Sedum sarmentosum, Zoysia japonica, Chrysanthemum zawadskii) for middle region green roof system. For this, a test was conducted on the roof of Konkuk University building from April 2009 to October 2009. In terms of treatment, five types(SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$) depending on soil mixture ratio and two types(15cm, 25cm) by soil depth were created. Results of soil moisture volume by soil mixture ratio in the 15cm soil thickness showed that the difference was significance between simple soil and mixture soil treatment, however, the statistical significance was not recognized according to soil mixture ratio. In case of 25cm soil thickness, soil moisture volume by soil mixture ratio was more higher 7Vol.%~10Vol.% in the mixture soil than simple soil treatment. In terms of districts planted ground cover plants, soil volume moisture differed among plants in the order Zoysia japonica 17.74 Vol.%$34.86^{\circ}C$, district non-planted $27.49^{\circ}C$, Sedum sarmentosum $25.11^{\circ}C$, Chrysanthemum zawadskii $23.08^{\circ}C$, Zoysia japonica $24.45^{\circ}C$ respectively So, concrete surface showed more higher $5^{\circ}C{\sim}15^{\circ}C$ than other things among the all the time. Result of inner temperature of the architecture and soil, it was measured inner of architecture $25.69^{\circ}C$, inner district non-planted $24.29^{\circ}C$, Chrysanthemum zawadskii $23.90^{\circ}C$, Zoysia japonica $24.02^{\circ}C$, Sedum sarmentosum $25.13^{\circ}C$, respectively.