• Title/Summary/Keyword: non-thermal sterilization

Search Result 34, Processing Time 0.029 seconds

Effect of Sterilization by Intense Pulsed Light on Radiation-resistant Bacterium, Micrococcus roseus (방사선 저항세균 Micrococcus roseus의 광펄스 살균 효과)

  • Kim, Bora;Kim, Ae-Jin;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.248-251
    • /
    • 2013
  • The purpose of this study was to investigate the inactivation effect of intense pulsed light (IPL) on Micrococcus roseus, an irradiation-resistant bacterium isolated from laver, and the commercial feasibility of this sterilization method on dried laver. The inactivation of M. roseus in cultivated plates increased with increasing light intensity and treatment time. Approximately 6.6 log CFU/mL reduction of the cell viability was achieved with IPL treatment for 3 min at 1,000 V of light intensity, tailing was not shown. In addition, the inactivation rate of M. roseus increased with increasing pulse number at same light intensity and treatment time. The killing efficiency for M. roseus increased with by decreasing the distance between the light source and the sample surface.

Commercial pasteurization of foods using high voltage pulsed electric fields treatment (고전압 펄스 전기장을 이용한 식품의 상업적 살균)

  • Shin, Jung-Kue
    • Food Science and Industry
    • /
    • v.53 no.3
    • /
    • pp.284-294
    • /
    • 2020
  • High voltage pulsed electric field technology has been attracting attention in the the food industry as an eco-friendly nonthermal process technology using electrical energy. The lack of understanding of the equipment and the burden of equipment cost have not significantly increased the commercial application, but the potential as a technology to replace the heat process has been continuously increased. Sterilization of foods using the PEF process has been applied to liquid foods with low viscosity such as fruit and vegetable juices, but recently, high viscosity smoothies, high concentrate protein drink, mixed juice, and alcoholic beverages. Studies on sterilization of solid foods such as powders, raw meats are also being conducted. Also, the application of extraction and recovery of useful ingredients, activation of active compounds, pretreatment of drying, improvement of meat quality, changes of properties of starch has been studies.

Nonthermal Sterilization of Dried Laver by Intense Pulsed Light with Batch System (회분식 광펄스 처리에 의한 마른 김의 비가열 살균)

  • Kim, Ae-Jin;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.778-781
    • /
    • 2014
  • Intense pulsed light (IPL) is a nonthermal technology emerging as an alternative to conventional thermal treatment. The purpose of this study was to investigate the effect of IPL treatment on the microbial inactivation, color alteration, and temperature change of dried laver to evaluate the commercial feasibility of IPL as a sterilization method. IPL treatment (10 min at 1,000 V and 5 pps) resulted in approximately 1.6 log CFU/g decrease in microbial cell viability. After IPL treatment, the surface temperature of dried laver increased by $1.9^{\circ}C$. The color lightness of dried laver increased with increased treatment time, while redness and yellowness decreased. However, these color differences were not significant.

Cellular and Molecular Responses of a Filamentous Fungus Neurospora Crassa to Non-thermal Plasma at Atmospheric Pressure

  • Park, Gyung-Soon;Ryu, Young-Hyo;Hong, Young-June;Uhm, Han-Sup;Choi, Eun-H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.476-476
    • /
    • 2012
  • Although plasma is an efficient means of microbial sterilization, mechanism of plasma effect on microorganisms still needs to be clarified. In addition, a limited number of studies are available on eukaryotic microorganisms such as yeast and fungi in relation to plasma application. Thus, we investigated cellular and molecular aspects of plasma effects on a filamentous fungus, Neurospora crassa by making use of argon plasma jet at atmospheric pressure. The viability and cell morphology of N. crassa spores exposed to plasma were both significantly reduced depending on the exposure time when treated in water. The intracellular genomic DNA content was dramatically reduced in fungal tissues after a plasma treatment and the transcription factor tah-3 was found to be required for fungal tolerance to a harsh plasma environment.

  • PDF

The potential of X-ray irradiation as a new pasteurization technology for food (식품 살균을 위한 X선 조사 기술의 활용 및 전망)

  • Lim, Jong-Seong;Ha, Jae-Won
    • Food Science and Industry
    • /
    • v.53 no.3
    • /
    • pp.264-276
    • /
    • 2020
  • Ionizing radiation is one of the efficient non-thermal pasteurization methods. The US Food and Drug Administration (FDA) allows the use of ionizing radiation to a dose up to 10 kGy for controlling foodborne pathogens and extending the self-life of foods. Recently X-rays, generated on absorption of high energy electrons in an appropriate metal target, have been used commercially for sterilization purposes. X-rays have the advantages of higher penetration power than E-beams and absence of harmful radioactive sources, such as Cobalt-60 or Cesium-137 associated with gamma-rays. That is why it has continued to receive attention as an attractive alternative to gamma-ray or E-beam irradiation. In this article, the potential of X-ray irradiation for controlling foodborne pathogens in various food products and necessary pre-requisite knowledge for the introduction of X-ray irradiation to the Korean food industry will be provided.

Disinfection efficacy of slightly acidic electrolyzed water (SlAEW) against some fresh vegetables (미산성 차아염소산수의 신선 채소류에 대한 살균 유효성)

  • Park, Kee-Jai;Lim, Jeong-Ho;Jung, Heeyong;Jeong, Mooncheol
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.312-319
    • /
    • 2017
  • In the present study, disinfection efficacy of slightly acidic electrolyzed water [SlAEW, 30 ppm of effective chlorine at $20{\pm}1^{\circ}C$, oxidation-reduction potential (ORP) $562{\pm}23mV$, pH 6.4] on 4 kinds of vegetables (lettuce leaf, endive leaf, perilla leaf and kale leaf) was evaluated to obtain a microbial reduction characteristics which are necessary to design a process control for non-thermal sterilization of fresh vegetables. Active chlorine, residual chlorine, microbial counts and residual microbial counts, which are the key factors in the non-thermal sterilization process were measured by dipping them in SlAEW three times for 30 minutes in order to analyze the relationship between factors. Total microbial count was decreased mostly during the first 10 minutes of washing, and the limit value that can be reduced by immersion treatment was 3 log CFU/g for the total microbial count surviving in 4 kinds of vegetables. The total number of microorganism that can be reduced by washing in SIAEW for 10 min was found to be about 2 log CFU/g on average. In addition, the active chlorine decreased in the initial 10 minutes in 2.2 ppm, 2.0 ppm, 1.7 ppm and 2.5 ppm in lettuce, perilla leaf, endive leaf and kale leaf, respectively, and about 50-80% of the chlorine was reduced in the initial 10 min appear.

Analysis of Biological Effect of DBD-type Non-thermal Atmospheric Pressure Plasma on Saccharomyces Cerevisiae

  • Park, Gyung-Soon;Baik, Ku-Yeon;Kim, Jung-Gil;Kim, Yun-Jung;Lee, Kyung-Ae;Choi, Eun-Ha;Uhm, Hwan-Sup;Jung, Ran-Ju;Cho, Kwang-Sup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.337-337
    • /
    • 2011
  • Application of plasma technology on microbial sterilization has been frequently studied. In spite of accumulating number of studies, many have been focused on bacteria. Reports on eukaryotic yeasts and filamentous fungi are limited. In addition, mechanism of plasma effect still needs to be clarified. In this study, we analyzed the effect of non-thermal atmospheric pressure plasma on the budding yeast, Saccharomyces cerevisiae using DBD-type device. When yeast cells were exposed to plasma (at 2 mm distance) and then cultured on YPD-agar plate, number of cells survived (shown as colony) were reduced proportionally to exposure time. More than 50% reduction in number of colonies were observed after twice exposure of 5min. each. Colonies much smaller than those of control (no plasma exposure) were appeared after twice exposure of 5 min. each. It seems that small colonies are resulted from delayed cell growth due to the damage caused by plasma treatment. Microscopic analysis demonstrates that yeast cells treated with plasma for 5 min. twice have more rough and shrinked shape compared to oval shape with smooth surface of control.

  • PDF

Effect of non-thermal atmospheric pressure nitrogen and air plasma on the surface properties and the disinfection of denture base resin (상온대기압 질소 및 공기 플라즈마가 의치상용 레진의 표면 특성과 살균효과에 미치는 영향)

  • Seo, Hye-Yeon;Yoo, Eun-Mi;Choi, Yu-Ri;Kim, Soo-Hwa;Kim, Kwang-Mahn;Kim, Kyoung-Nam
    • Journal of Korean society of Dental Hygiene
    • /
    • v.14 no.5
    • /
    • pp.783-788
    • /
    • 2014
  • Objectives : The purpose of this study was to investigate the effect of non-thermal atmospheric pressure plasma jet(NTAPPJ) on surface properties and Streptococcus mutans disinfection of denture base resin. Methods : Self-cured denture base resin (Jet denture repair resin, Lang dental Mfg, co., USA) was used to make specimen($12mm{\times}2mm$). To observe surface change before and after plasma process, surface roughness and contact angle were measured. For sterilization experiments, the surfaces of specimens were treated with nitrogen and air NTAPPJ for 1 minute after S. mutans was inoculated on the material surfaces. Results : Before plasma process, surface roughness of denture base resin was $0.21{\mu}m{\pm}0.02{\mu}m$. After air and nitrogen NTAPPJ process, surface roughness was $0.19{\mu}m{\pm}0.03{\mu}m$ and $0.18{\mu}m{\pm}0.01{\mu}m$ respectively. There was no significant difference(p>0.05). Contact angle of control group without plasma process was $83.81^{\circ}{\pm}3.14^{\circ}$, while after plasma treatment, contact angles of air NTAPPJ and nitrogen NTAPPJ groups were $63.29^{\circ}{\pm}2.27^{\circ}$ and $46.68^{\circ}{\pm}5.82^{\circ}$ respectively. The result showed a significant decrease in contact angle after plasma process(p<0.05). Compared to the control group 6020.33(CFU/mL) without plasma process, CFU decreased significantly after air NTAPPJ 90.75(CFU/mL) and nitrogen NTAPPJ 80.25(CFU/mL) treatment(p<0.05). Conclusions : It was considered that NTAPPJ can be used for denture disinfection without changing surface properties of materials.

Inactivation of Human Norovirus GII. 4 on Oyster Crassostrea gigas by Electron Beam Irradiation (전자선 조사에 의한 신선굴(Crassostrea gigas) 중 휴먼노로바이러스 GII. 4의 저감화)

  • Kim, Ji Yoon;Jeon, Eun Bi;Choi, Man-Seok;Park, Shin Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • This study investigated the reduction in human norovirus (HNV) GII. 4 count in pacific oyster Crassostrea gigas using electron beam irradiation. Infectious HNV GII. 4 was detected using RT-qPCR (real time reverse transcription-quantitative polymerase chain reaction) with PMA (propidium monoazide)/sarkosyl. At electron beam doses 1, 5, 7, and 10 kGy, the count of HNV GII. 4 was 2.74, 2.37, 2.06, and 1.55 log copies/μL (control, 3.01 log copy/μL), respectively, confirming that as the irradiation dose increased, norovirus count reduced significantly (P<0.05). After PMA/sarkosyl treatment, the counts further reduced at the same irradiation dose, and 10 kGy showed significant differences between the non-treated and PMA/sarkosyl-treated samples (P<0.05). The Ed (decimal reduction dose of electron beam) value based on the first-order kinetic model was 7.33 kGy (R2=0.98). No significant difference was observed in the pH values of the control (6.2) and electron beam-irradiated samples at all doses (6.1). For sensory evaluation, the non-treated sample scored the highest in all categories (5.25-6.17), while the samples treated with 10 kGy showed the lowest score (4.67-5.33), although without statistical significance (P>0.05). Overall, our results suggest that 7 kGy electron beam is sufficient for the non-thermal sterilization of oysters without causing significant changes in quality.

Sterilization of Rapeseed Sprouts by Intense Pulsed Light Treatment (고강도 광원을 이용한 새싹 채소의 살균)

  • Park, Heeran;Cha, Gyung-Hee;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.36-41
    • /
    • 2016
  • In this study, the effects of intense pulsed light (IPL) treatment on microbial inactivation and quality in rapeseed sprouts were investigated. Untreated rapeseed sprouts exhibit a high level of total aerobic bacteria (TAB) ($1.2{\times}10^7CFU/g$), coliform bacteria (coliform) ($3.3{\times}10^6CFU/g$), and pathogenic E. coli (PE) ($2.1{\times}10^5CFU/g$). The microorganisms found on rapeseed sprouts decreased with exposure to increasing light intensity and treatment time. The greatest reduction in microbial content was observed with a treatment of 1000 V, 5 pps for 10 min, where TAB, coliform, and PE levels decreased to 1.0 log CFU/g, 1.6 log CFU/g, and 1.8 log CFU/g, respectively. In agreement with these data, the microbial inactivation rate increased with the increase in the distance between the light source and the samples during IPL treatment. After IPL treatment of rapeseed sprouts, water content and vitamin C content decreased.