Browse > Article
http://dx.doi.org/10.23093/FSI.2020.53.3.284

Commercial pasteurization of foods using high voltage pulsed electric fields treatment  

Shin, Jung-Kue (Smart Food Convergence Technology ICC, Jeonju University)
Publication Information
Food Science and Industry / v.53, no.3, 2020 , pp. 284-294 More about this Journal
Abstract
High voltage pulsed electric field technology has been attracting attention in the the food industry as an eco-friendly nonthermal process technology using electrical energy. The lack of understanding of the equipment and the burden of equipment cost have not significantly increased the commercial application, but the potential as a technology to replace the heat process has been continuously increased. Sterilization of foods using the PEF process has been applied to liquid foods with low viscosity such as fruit and vegetable juices, but recently, high viscosity smoothies, high concentrate protein drink, mixed juice, and alcoholic beverages. Studies on sterilization of solid foods such as powders, raw meats are also being conducted. Also, the application of extraction and recovery of useful ingredients, activation of active compounds, pretreatment of drying, improvement of meat quality, changes of properties of starch has been studies.
Keywords
high voltage pulsed electric fields; non-thermal process; sterilization; processing condition; other application;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Grahl T, Sitzmann W, Markl H. Killing of microorganisms in fluid media by high-voltage pulses. pp. 675-678. In: Proceedings of the 10th DECHEMA Biotechnol. Conference Series, 5B, Verlagsgesellsellschaft, Hamburg, Germany (1992)
2 Ha KY, Shin JK, Lee SH, Cho HY, Pyun YR. Nonthermal pasterization of carrot juice by high voltage pulsed electric fields with exponential decay pulse. Korean J. Food Sci. Technol. 31: 1577-1582 (1999)
3 Hoffmann GA. Cell in electric fields, physical and practical electron aspects of electro- cell fusion and electroporation. In: Electroporation and Electrofusion in Cell Biology, Neumann E, Sower AE, Jordan CA. Plenum Press, New York, NY, USA (1989)
4 Hong SI. Inactivation of Lactobacillus plantarum by high pressure carbon dioxide. Ph.D. Thesis, Yonsei Universtiy, Seoul, Korea (1997)
5 Hulsheger H, Niemann EG. Lethal effects of high voltage pulses on E. coli K12, Rad. Environ. Biohpys. 18: 281-288 (1980)   DOI
6 Hulsheger H, Potel J, Niemann EG. Killing of bacteria with electric pulses of high field stength. Rad. Environ. Biophys. 20: 53-65 (1981)   DOI
7 Hulsheger H, Potel J. Niemann EG. Electric field effects on bacteria and yeast cells. Rad. Environ. Biophys. 22: 149-162 (1983)   DOI
8 Jager H, balasa A, Knorr D. Food industry applications for pulsed electric fields. pp. 181-216. In: Electrotechnologies for Extraction from Food Plants and Biomaterials. Eugene V, Nikolai L. Springer, Berlin, Germany (2009)
9 JalteM, LanoiselleJL, Lebovka NI, Vorobiev E. Freezing of potato tissue pre-treatment by pulsed electric fields. LWT-Food Sci. Technol. 42: 576-580 (2009)   DOI
10 Lee SJ, Bang IH, Choi HK, Min SC. Pasteurization of mixed mandarin and hallabong tangor juice using pulsed electric field processing combined with heat. Food Sci. Biotechnol. 27: 669-675 (2018)   DOI
11 Liu C, Pirozzi A, Ferrari G, Vorobiev E, Grimi N. Effects of pulsed electric fields on vacuum drying and quality characteristics of dried carrot. Food Bioprocess Tech. 13: 45-52 (2020)   DOI
12 Lee SJ, Shin JK. Intra- an extra-cellular mechanisms of Sacchromyces cerevisiae inactivation by high voltage pulsed electric fields treatment. Korean J. Food Sci. Technol. 47: 87-94 (2015)   DOI
13 Leungo E, Raso J. Pulsed electric field-assisted extraction of pigments from Chlorella vulgaris. pp 2939-2954. In: Handbook of Electroporation. MiklavcicD. (Ed.), Springer Nature, Cham, Switzerland (2017)
14 Liang R, Zhang Z, Lin S. Effects of pulsed electric field on intracellular antioxdant activity and antioxidant enzyme regulating capacities of pine nut (Pinus koraiensis) peptide QDHCH in HepG2 cells. Food Chem. 237: 793-802 (2017)   DOI
15 Park HC, Shim JM, Lee JH, Lee DU. Application of pulsed electric field on food processing. Food Ind. 45: 70-75 (2012)
16 Mannozzi C, Rompoonpol K, Fauster T, Tylewicz U, Romani S, Rosa MD, Jaeger H. Influence of pulsed electric field and ohmic heating pretreatments on enzyme and antioxidant activity of fruit and vegetable juices. Foods 8: 247 (2019)   DOI
17 Martin-Belloso O, Elez-Martinez P. Food safety aspects of pulsed electric fields. pp 184-217. In: Emerging Technology for Food Processing. Sun DW, Academic Press, Cambridge, MA, USA
18 Mohamed MEA, Eissa AHA. Pulsed electric fields for food processing technology. pp 275-306. In: Structure and Function of Food Engineering. IntechOpen, London, UK (2012)
19 Park HR, Yoon SJ, Park HS, Shin JK. Physiological changes of Saccharomyces cerevisiae by high voltage pulsed electric field treatment. Korean J. Food Sci. Technol. 45: 590-597 (2013)   DOI
20 Pina-Perez M, Martinez-Lopez A, Rodrigo D. Cocoa powder as a natural ingredient revealing an enhancing effect to inactivate Cronobacter sakazakki cells treated by pulsed electric fields in infant milk formula. Food Control 32: 87-92 (2013)   DOI
21 Puertolas E, Barba FJ. Electrotechnologies applied to valorization of by-produtcts from food industry: main findings, energy and economic cost of their industrialization. Food Bioprod. Process. 100: 172-184 (2016)   DOI
22 Qin BL, Zhang Q, Barbosa-Canovas GV, Swanson BG, Pedrow PD. Inactivation of microorganisms by pulsed electric fields of different voltage waveforms. IEEE T. Dielect. El. In. 1: 1047-1057 (1994)   DOI
23 Sakr M, Liu S. A comprehensive review on applications of ohmic heating (OH). Renew Sustain Energy Rev. 39:262-260 (2014)   DOI
24 Rezaeimotlagh A, Tang KSC, Resch M, Cullen PJ, Trujillo FJ. Inactivation kinetics of Escherichia coli in cranberry juice during multistage treatment by electric fields. Food Res. Intl. 106: 780-790 (2018)   DOI
25 Rocha CMR, Genisheva Z, Ferreira-Santos P, Rodrigues R, Vincente AA, Teixeira JA, Pereira RN.. Electric field-based technologies for valorization of bioresources. Bioresource Technol. 254: 325-339 (2019)   DOI
26 Rogob EA. Electroplasmolysis. p 86. In: Electrical and Physical Process of Food. Agriculture Production, Moscow, Russia (1988)
27 Sale AJ, Hamilton WA. Effect of high electric fields on microorganisms. I. Killing of bacteria and yeast. Biochim. Biophys. Acta 148: 781-788 (1967)   DOI
28 Sale AJ, Hamilton WA. Effect of high electric fields on microorganisms. II. Mechanisms of action of the lethal effect. Biochim. Biophys. Acta 148: 789-800 (1967)   DOI
29 Saravia J, Oliviera JC, Lemos A, Hendrickx M. Analysis of the kinetic pattern of horseradish peroxidase thermal inactivation in sodium phophate buffer solutions of different ionic strength. Intl. J. Food Sci. Technol. 31: 223-231 (1996)   DOI
30 Schottroff F, Gratz M, Krottenthaler A, Johnson NB, Bedard MF, Jaeger H. Pulsed electric field preservation of liquid whey protein formulations - influence of process parameters, pH, and protein content on the inactivation of Listeria innocua and the retention of bioactive ingredients. J. Food Eng. 243: 142-152 (2019)   DOI
31 Shin Jk, Kim BR, Kim AJ. Nonthermal food processing technology using electric power. Food Ind. 43: 21-34 (2010)
32 Scottroff F, Johnson K, Johnson NB, Bedard MF, Jaeger H. Challenges and limitations for the decontamination of high solids protein solutions at neutral pH using pulsed electric fields. J. Food Eng. 268: 109737 (2020)   DOI
33 Shahin R, Mohamed K, Anderson SS, Ralf G. Mechanisms of microbial inactivation by emerging technologies. pp 111-132. In: Innovative Technologies for Food Preservation. Francisco JB, Anderson SS, Vibeke O, Mohamed K. Academic Press, Cambridge, MA. USA (2018)
34 Shin JK, Ha KY, Pyun YR, Choi MS, Chung MS. Pasteurization of carrot juice by high voltage pulsed electric fields with square wave pulse and quality change during storage. Korean J. Food Sci. Technol. 39: 506-514 (2007)
35 Shin JK, Pyun YR. Sterilization of food using high voltage pulsed electric fields. Food Ind. 33: 27-35 (2000)
36 Shin JK. Inactivation of Sacchromyces cerevisiae by high voltage pulsed electric fields, Ph.D Thesis, Yonsei University, Seoul, Korea (2000)
37 Shin JK. The effect of operating parameters on inactivation of Saccharomyces cerevisiae by high voltage pulsed electric fields. Food Eng. Prog. 12: 90-96 (2008)
38 Simonis P, Kresulis S, Stankevich V, Kamilija S, Striguniene K, Ragoza G, Arunas S. Pulsed electric field effects on inactivation of microorganisms in acid whey. Intl. J. Food Microbiol. 291: 128-134 (2019)   DOI
39 Sitzmann W. High voltage pulse techniques for food preservation. pp 236-252. In: New Methods of Food Preservation, Gould GW, Chapman & Hall, London, UK (1995)
40 Son SM, Shin JK. The effect of environmental factors on inactivation of Saccharomyces cerevisiae by high voltage pulsed electric fields. Food Eng. Prog. 12: 154-162 (2008)
41 Starodub GP, Livinskiy SA, Gabriyelyan SZ, Lubaya SI, Afanacev MA. Process control of pre-sowing seed treatment by pulsed electric field. Acta Technol. Agri. 1: 28-32 (2018)
42 Timmermans RAH, Nederhoff AL, Nierop Groot MN, van Boekel MAJS, Mastwijk HC. Effect of electrical field strength applied by PEF processing and storage temperature on the outgrowth of yeasts and moulds naturally present in a fresh fruit smoothie. Intl. J. Food Microbiol. 230: 21-30 (2016)   DOI
43 Timmermans RAH, Nierop Groot MN, Nederhoff AL, van Boekel MAJS, Master AM, Mastwijk HC. Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic microorganisms. Intl. J. Food Microbiol. 173: 105-111 (2014)   DOI
44 van Wyk S, Farid MM, Silva FVM. $SO_2$ high pressure processing and pulsed electric field treatments of red wine: effect on sensory, Brettanomyces inactivation and other quality parameters during one year storage. Innov. Food Sci. Emerg. Technol. 48: 204-211 (2018)   DOI
45 Vega-Mercado H, Gongora-Nieto MM, Barbosa-Canovas GV, Swanson BG. Pulsed electric fields in food preservation. pp 783-813, In: Handbook of Food Preservation. Rahman MS, CRC press, Boca Raton, FL, USA (2007)
46 Vega-Mercado H, Pothakamury UR, Chang FJ, Barbosa-Canovas GC, Swanson BG. Inactivation of Escherichia coli by combiniation pH, ionic strength and pulsed electric fields hurdles. Food Res. Intl. 29: 117-121 (1996)   DOI
47 Yu Y, Jin TZ, Xiao G. Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries. J. Food Proc. Preserv. e13303 (2017)   DOI
48 Ahmed Z, Manzoor MF, Ahmad N, Zeng XN, ud Din Zia, Roobab U, Qayum A, Siddique R, Siddeeg A, Rahaman A. Impact of pulsed electric field treatments on the growth parameters of wheat seeds and nutritional properties of their wheat plantlets juice. Food Sci. Nutr. in press (2020)
49 Zhu F. Modifications of starch by electric field based techniques. Trends Food Sci. Tech. 75: 158-169 (2018)   DOI
50 Zimmermann U. Electric breakdown, electropermeabilization and electrofusion. Rev. Physiol. Biochem. Pharmacol. 105: 176-256 (1986)
51 Aibara S, Hisaki K, Watanabe J. Effects of high-voltage field treatment on wheat dough and bread-making properties. Cereal Chem. 64: 465-467 (1992)
52 Astrain-Redin L, Raso J, Gebrian G, Alvarez I. Potential of pulsed electric fields for the preparation of Spanish dry-cured sausages. Sci. Rep. 9: 16042 (2019)   DOI
53 Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, Saraiva JA, Raso J, Martin-Belloso O, Witrowa-Rajchert D, Lebovka N, Vorobiev E. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res. Intl. 77: 773-798 (2015)   DOI
54 Clemente I, Condon-Abanto S, Pedros-Garrido S, Whyte P, Lyng JG. Efficacy of pulsed electric fields and antimicrobial compounds used alone and in combination for the inactivation of Campylobactor jejuni in liquids and raw chicken. Food Control 107: 106491 (2020)   DOI
55 Barba FJ, Zhu Z, Koubaa M, Sant'Ana AS, Orlien V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci. Tech. 49: 96-109 (2016)   DOI
56 Bekhit AEDA, van de Ven R, Suwandy V, Fahri F, Hopkins DL. Effect of pulsed electric field treatment on cold-boned muscles of different potential tenderness. Food Bioprocess Technol. 7: 3136-3146 (2014)   DOI
57 Beveridge JR, MacGregor SJ, Anderson JG, Fouracre RA. The influence of pulse duration on the inactivation of bacteria using monopolar and bipolar profile pulsed electric fields. IEEE T. Plasma Sci. 33: 1287-1293 (2005)   DOI
58 Buckow R, NG S, Toepfl S. Pulsed electric field processing of orange juice : a review on microbial, enzymatic, nutritional, and sensory quality and stability. Compr. Rev. Food Sci. F. 12: 455-467 (2013)   DOI
59 Caminiti IM, Palgan I, Noci F, Munoz A, Whyte P, Cornin DA, Morgan DJ, Lyng JG. The effect of pulsed electric fiels (PEF) in combination with high intensity light pulse (HILP) on Escherichia coli inactivation and quality attributes in apple juice. Innov. Food Sci. Emerg. 12: 118-123 (2011)   DOI
60 Doevenspeck H. Influencing cells and cell walls by electrostatic impulses. Fleischwirtschaft 13: 968-987 (1961)
61 Dunn JE, Pearlman JS. Methods and apparatus for extending the shelf life of fluid food products. US Patent 4,695,472 (1987)
62 Galanakis CM. Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod. Process 91: 575-579 (2013)   DOI
63 Ferreira VJ, Arnal AJ, Roya Patricia, Garcia-Armingol T, Lopez-Sabiron AM, Ferreira G. Energy and resource efficiency of electroporation-assisted extraction as an emerging technology towards a sustainable bio-economy in the agri-food sector. J. Clean. Prod. 233: 1123-1132 (2019)   DOI