• Title/Summary/Keyword: non-testing methods

Search Result 500, Processing Time 0.021 seconds

Experimental study on structural integrity assessment of utility tunnels using coupled pulse-impact echo method (결합된 초음파-충격 반향 기법 기반의 일반 지하구 구조체의 건전도 평가에 관한 실험적 연구)

  • Jin Kim;Jeong-Uk Bang;Seungbo Shim;Gye-Chun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.479-493
    • /
    • 2023
  • The need for safety management has arisen due to the increasing number of years of operated underground structures, such as tunnels and utility tunnels, and accidents caused by those aging infrastructures. However, in the case of privately managed underground utility ducts, there is a lack of detailed guidelines for facility safety and maintenance, resulting in inadequate safety management. Furthermore, the absence of basic design information and the limited space for safety assessments make applying currently used non-destructive testing methods challenging. Therefore, this study suggests non-destructive inspection methods using ultrasonic and impact-echo techniques to assess the quality of underground structures. Thickness, presence of rebars, depth of rebars, and the presence and depth of internal defects are assessed to provide fundamental data for the safety assessment of box-type general underground structures. To validate the proposed methodology, different conditions of concrete specimens are designed and cured to simulate actual field conditions. Applying ultrasonic and impact signals and collecting data through multi-channel accelerometers determine the thickness of the simulated specimens, the depth of embedded rebar, and the extent of defects. The predicted results are well agreed upon compared with actual measurements. The proposed methodology is expected to contribute to developing safety diagnostic methods applicable to general underground structures in practical field conditions.

A Study of Penetration Depth into Ceiling Materials containing Asbestos according to Dilution Rate of Scattering Prevention Agent (석면 함유 천장재의 안정화제 희석에 따른 침투깊이 연구)

  • Shin, Hyungyoo;Choi, Youngkue;Jeon, Boram;Ha, Jooyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.82-88
    • /
    • 2015
  • Objectives: This study is designed to analyze the penetration performance into ceiling materials containing asbestos of scattering prevention agents and investigate the change in penetration depth and viscosity according to the dilution rate of anti-scattering agents diluted with distilled water. Methods: Five different types of scattering prevention agents were spread on plate-type asbestos ceiling materials. The penetration depth of each coated ceiling material was measured by energy dispersive spectroscopy (EDS) analysis, based on X-ray fluorescence (XRF) results of the non-coated ceiling materials. Test equipment installed the ceiling materials and 60 minutes were collected at a flow rate of $10{\ell}/min$ at a filter of 25 mm. Results: An EDS analysis of the cross-section of ceiling materials constructed with a scattering prevention agent revealed that potassium is detected in the process of penetrating hardener solidification and this element could be an indicator for infiltration. When anti-scattering agents with different viscosities were constructed and the penetration depth was analyzed by potassium detection assessment using EDS, the depth results with viscosities of 5.0, 2.5, and 1.9 cP were 98.5, 103, and $147{\mu}m$, respectively. Penetration performance improved with decrease in viscosity. Conclusions: For asbestos ceiling materials, it is concluded that a higher dilution rate of the scattering prevention agent leads to lower viscosity, and hence a deeper penetration depth from $156{\mu}m$ to 3 mm. The asbestos anti-scattering properties according to the penetration depth will be confirmed through further study.

What Made Her Give Up Her Breasts: a Qualitative Study on Decisional Considerations for Contralateral Prophylactic Mastectomy among Breast Cancer Survivors Undergoing BRCA1/2 Genetic Testing

  • Kwong, Ava;Chu, Annie T.W.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2241-2247
    • /
    • 2012
  • Objective: This qualitative study retrospectively examined the experience and psychological impact of contralateral prophylactic mastectomy (CPM) among Southern Chinese females with unilateral breast cancer history who underwent BRCA1/2 genetic testing. Limited knowledge is available on this topic especially among Asians; therefore, the aim of this study was to acquire insight from Chinese females' subjective perspectives. Methods: A total of 12 semi-structured in-depth interviews, with 11 female BRCA1/BRCA 2 mutated gene carriers and 1 non-carrier with a history of one-sided breast cancer and genetic testing performed by the Hong Kong Hereditary Breast Cancer Family Registry, who subsequently underwent CPM, were assessed using thematic analysis and a Stage Conceptual Model. Breast cancer history, procedures conducted, cosmetic satisfaction, pain, body image and sexuality issues, and cancer risk perception were discussed. Retrieval of medical records using a prospective database was also performed. Results: All participants opted for prophylaxis due to their reservations concerning the efficacy of surveillance and worries of recurrent breast cancer risk. Most participants were satisfied with the overall results and their decision. One-fourth expressed different extents of regrets. Psychological relief and decreased breast cancer risk were stated as major benefits. Spouses' reactions and support were crucial for post-surgery sexual satisfaction and long-term adjustment. Conclusions: Our findings indicate that thorough education on cancer risk and realistic expectations of surgery outcomes are crucial for positive adjustment after CPM. Appropriate genetic counseling and pre-and post-surgery psychological counseling were necessary. This study adds valuable contextual insights into the experiences of living with breast cancer fear and the importance of involving spouses when counseling these patients.

A Study on the Application of Non-destructive (Ultrasonic) Inspection Technique to Detect Defects of Anchor Bolts for Road Facilities (도로시설물 적용 앵커볼트 결함 검출을 위한 비파괴(Ultrasonic) 검사 기법 적용에 대한 연구)

  • Dong-Woo Seo;Jaehwan Kim;Jin-Hyuk Lee;Han-Min Cho;Sangki Park;Min-Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • The general non-destructive inspection method for anchor bolts in Korea applies visual inspection and hammering inspection, but it is difficult to check corrosion or fatigue cracks of anchor bolts in the part included in the foundation or in the part where the nut and base plate are installed. In reality, objective investigation is difficult because inspection is affected by the surrounding environment and individual differences, so it is necessary to develop non-destructive inspection technology that can quantitatively estimate these defects. Inspection of the anchor bolts of domestic road facilities is carried out by visual inspection, and since the importance of anchor bolts such as bridge bearings and fall prevention facilities is high, the life span of bridges is extended through preventive maintenance by developing non-destructive testing technology along with existing inspection methods. Through the development of this technology, non-destructive testing of anchor bolts is performed and as a technology capable of preemptive/active maintenance of anchor bolts for road facilities, practical use is urgently needed. In this paper, the possibility of detecting defects in anchor bolts such as corrosion and cracks and reliability were experimentally verified by applying the ultrasonic test among non-destructive inspection techniques. When the technology development is completed, it is expected that it will be possible to realize preemptive/active maintenance of anchor bolts by securing source technology for improving inspection reliability.

Characteristics and response of mouse bone marrow derived novel low adherent mesenchymal stem cells acquired by quantification of extracellular matrix

  • Zheng, Ri-Cheng;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee;Park, Ji-Man
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.351-360
    • /
    • 2014
  • PURPOSE. The aim of present study was to identify characteristic and response of mouse bone marrow (BM) derived low-adherent bone marrow mesenchymal stem cells (BMMSCs) obtained by quantification of extracellular matrix (ECM). MATERIALS AND METHODS. Non-adherent cells acquired by ECM coated dishes were termed low-adherent BMMSCs and these cells were analyzed by in vitro and in vivo methods, including colony forming unit fibroblast (CFU-f), bromodeoxyuridine (BrdU), multi-potential differentiation, flow cytometry and transplantation into nude mouse to measure the bone formation ability of these low-adherent BMMSCs. Titanium (Ti) discs with machined and anodized surfaces were prepared. Adherent and low-adherent BMMSCs were cultured on the Ti discs for testing their proliferation. RESULTS. The amount of CFU-f cells was significantly higher when non-adherent cells were cultured on ECM coated dishes, which was made by 7 days culturing of adherent BMMSCs. Low-adherent BMMSCs had proliferation and differentiation potential as adherent BMMSCs in vitro. The mean amount bone formation of adherent and low-adherent BMMSCs was also investigated in vivo. There was higher cell proliferation appearance in adherent and low-adherent BMMSCs seeded on anodized Ti discs than machined Ti discs by time. CONCLUSION. Low-adherent BMMSCs acquired by ECM from non-adherent cell populations maintained potential characteristic similar to those of the adherent BMMSCs and therefore could be used effectively as adherent BMMSCs in clinic.

Evaluation of the Integrity of TIG Welding Using Non-Contact SH-EMAT (비접촉 SH-EMAT을 이용한 TIG용접부 건전성 평가)

  • Park, Tae Sung;Park, Yeong Hwan;Park, Ik Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.48-53
    • /
    • 2016
  • An EMAT can be used to reliably detect defects as it serves as a non-contact transducer with the ability to transmit ultrasonic waves into specimens without couplant. Moreover, an EMAT can easily generate desired waves by altering the design of the coil and magnet. This study proposes an SH-EMAT to evaluate the integrity of the TIG welding part. A stainless steel was welded using the TIG welding method. The welding current was varied to create artificial defects. Both the PA-UT and the RT were applied to verify the defect size. The experimental results generated by using the EMAT were compared with those methods. The amplitude was observed to decrease with an increase in the defect size. These results confirmed that the presence of defects can be reliably detected by attenuation of signal amplitude. The results demonstrated that the proposed method is suitable for evaluating the integrity of TIG welding.

Correlation between Bilateral Reciprocal Leg Press Test and The Balance in Chronic Stroke Patient (뇌졸중 환자의 양하지 교차밀기 근력 검사와 균형의 상관 관계 연구)

  • Jung, Ji-Hoon;Kim, Joong-Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.4
    • /
    • pp.180-186
    • /
    • 2013
  • Purpose: This study was to find a correlation between the bilateral reciprocal leg press test and a the balance in chronic stroke patients. Methods: Eighteen patients performed an isokinetic leg press test consisting of a bilateral reciprocal and unilateral mode. Following the isokinetic leg press testing, subjects performed the balance test: Berg Balance Scale (BBS), Timed Up & Go (TUG) test, and stability limit. Pearson product moment correlation coefficients were used to determine the correlation between the mean score of the isokinetic leg press test, balance test in both affected and non-affected side. Results: This study indicated a significant correlation between the bilateral reciprocal leg press test and stability limit. There were significant correlation between non-affected side bilateral leg press(NBL) and BBS (r=0.501), affected side bilateral leg press (ABL) and non-affected side stability limit(NS) (r=0.614), ABL and total stability limit (TS) (r=0.493), NBL and affected side stability limit(AS) (r=0.480), NBL and NS (r=0.560), NBL and TS (r=0.563), among the patients. Conclusion: Measurement of the lower extremity strength using the bilateral reciprocal leg press test can be used as an evaluating tool of the balance test.

Development of an Eco-friendly Plasticizer using Crude Glycol Derived from the Biodiesel Process (바이오디젤부산물인 폐글리세롤을 이용한 친환경 가소제의 개발)

  • Kang, Soo-Jung;Bae, Sung-Jae;Jin, Dae-Eon;Kim, Jinhwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.365-370
    • /
    • 2014
  • Objectives: The major objective is development of an eco-friendly non-phthalate plasticizer using crude glycol derived from the biodiesel process. Methods: Glycerol monolaurate(GML) was synthesized from glycol and triglyrcerides. Glycerol diacetomonolaurate(GDAL) was synthesized from GML and acetic acid. Results: The synthesis of the GDAL plasticizer was measured with nuclear magnetic resonance spectroscopy(NMR). Mechanical properties were measured by universal testing machine(UTM) and the experimental values were compared with phthalate plasticizers such as dioctyl phthalate(DOP). In particular, the values for tensile strength and elongations with GDAL were higher than with DOP. Conclusions: We confirmed the development of an eco-friendly non-phthalate plasticizer by NMR. Based on our results, applicability for food and drug packaging materials was found.

Exploring shrinkage crack propagation in concrete: A comprehensive analysis through theoretical, experimental, and numerical approaches

  • Vahab Sarfarazi;Soheil Abharian;Nima Babanouri
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.15-31
    • /
    • 2024
  • This study explores the failure mechanisms of 'I' shaped non-persistent cracks under uniaxial loads through a combination of experimental tests and numerical simulations. Concrete specimens measuring 200 mm×200 mm×50 mm were manufactured, featuring 'I' shaped non-persistent joints. The number of these joints varied from one to three, with angles set at 0, 30, 60, and 90 degrees. Twelve configurations, differing in the placement of pre-existing joints, were considered, where larger joints measured 80 mm in length and smaller cracks persisted for 20 mm with a 1 mm crack opening. Numerical models were developed for the 12 specimens, and loading in Y-axis direction was 0.05 mm/min, considering a concrete tensile strength of 5 MPa. Results reveal that crack starting was primarily influenced by the slope of joint that lacks persistence in relation to the loading direction and the number of joints. The compressive strength of the samples exhibited variations based on joint layout and failure mode. The study reveals a correlation between the failure behavior of joints and the number of induced tensile fracture, which increased with higher joint angles. Specimen strength increased with decreasing joint angles and numbers. The strength and failure processes exhibited similarities in both laboratory testing and numerical modeling methods.

The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures (원전 구조물 결함 탐지를 위한 음향방출 신호 처리 방안에 대한 기초 연구)

  • Kim, Jong-Hyun;Korea Aerospace University, Jae-Seong;Lee, Jung;Kwag, No-Gwon;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.485-492
    • /
    • 2009
  • The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection.