• Title/Summary/Keyword: non-structural

Search Result 3,791, Processing Time 0.029 seconds

Elastic Critical Laod of Tapered Columns (단순지지 변단면 압축재의 임계하중)

  • 홍종국;김순철;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.252-259
    • /
    • 1999
  • One of the most important factors for a proper design of a slender compression member may be the exact determination of the elastic critical load of that member. In the cases of non-prismatic compression member, however, there are times when the exact critical load becomes impossible to determinate if one relies on the neutral equilibrium method or energy principle. Here in this paper, the approximate critical loads of symmetrically or non-symmetrically tapered members are computed by finite element method. The two parameters considered in this numerical analysis are the taper parameter, $\alpha$ and the sectional property parameters, m. The computed results for each sectional property parameter, m are presented in an algebraic equation which agrees with those by F.E.M The algebraic equation can be easily used by structural engineers, who are engaged in structural analysis and design of non-prismatic compression member.

  • PDF

A neural network model to assess the hysteretic energy demand in steel moment resisting frames

  • Akbas, Bulent
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.177-193
    • /
    • 2006
  • Determining the hysteretic energy demand and dissipation capacity and level of damage of the structure to a predefined earthquake ground motion is a highly non-linear problem and is one of the questions involved in predicting the structure's response for low-performance levels (life safe, near collapse, collapse) in performance-based earthquake resistant design. Neural Network (NN) analysis offers an alternative approach for investigation of non-linear relationships in engineering problems. The results of NN yield a more realistic and accurate prediction. A NN model can help the engineer to predict the seismic performance of the structure and to design the structural elements, even when there is not adequate information at the early stages of the design process. The principal aim of this study is to develop and test multi-layered feedforward NNs trained with the back-propagation algorithm to model the non-linear relationship between the structural and ground motion parameters and the hysteretic energy demand in steel moment resisting frames. The approach adapted in this study was shown to be capable of providing accurate estimates of hysteretic energy demand by using the six design parameters.

Non-linear static analysis and design of Tensegrity domes

  • Fu, Feng
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.417-433
    • /
    • 2006
  • In this paper, a non-linear structural analysis software with pro-processing and post-recessing function is proposed by the author. The software incorporating the functions of the structural analysis and geometrical design of Tensegrity structures. Using this software, Cable Dome is analyzed as a prototype, a comprehensive study on the structural behavior of Tensegrity domes is presented in detail. Design methods of Tensegrity domes were proposed. Based on the analysis, optimizing design was performed. Several new Tensegrity domes with different geometrical design scheme are proposed, the structural analysis of the new schemes is also conducted. The analysis result shows that the proposed new forms of the Tensegrity domes are reasonable for practical applications.

Combining in-plane and out-of-plane behaviour of masonry infills in the seismic analysis of RC buildings

  • Manfredi, V.;Masi, A.
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.515-537
    • /
    • 2014
  • Current seismic codes (e.g. the NTC08 Italian code and the EC8 European code) adopt a performance-based approach for both the design of new buildings and the assessment of existing ones. Different limit states are considered by verifying structural members as well as non structural elements and facilities which have generally been neglected in practice. The key role of non structural elements on building performance has been shown by recent earthquakes (e.g. L'Aquila 2009) where, due to the extensive damage suffered by infills, partitions and ceilings, a lot of private and public buildings became unusable with consequent significant socio-economic effects. Furthermore, the collapse of infill panels, particularly in the case of out-of-plane failure, represented a serious source of risk to life safety. This paper puts forward an infill model capable of accounting for the effects arising from prior in-plane damage on the out-of-plane capacity of infill panels. It permits an assessment of the seismic performance of existing RC buildings with reference to both structural and non structural elements, as well as of their mutual interaction. The model is applied to a building type with RC framed structure designed only to vertical loads and representative of typical Italian buildings. The influence of infill on building performance and the role of the out-of-plane response on structural response are also discussed.

A Study on Development of Flood Vulnerability Evaluation Indicators for Sewage Treatment Plant (환경시설물 대상 홍수취약성 평가지표 개발에 관한 연구 - 하수처리장을 중심으로 -)

  • Roh, Jae-Deok;Han, Ji-Hee;Lee, Chang-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.110-118
    • /
    • 2020
  • This study developed a evaluation indicators on environmental facilities highly vulnerable to flood damage from quantitative and qualitative perspectives in order to reinforce the ability or preemptive disaster prevention. At first, this study classified the facilities into structural factor and non-structural factor. The structural factor consists of 11 indicators, the non-structural factor consists of 8 internal indicators and 6 external indicators. This study is expected to be prepared for flood damage by evaluating flood vulnerability of environmental facilities.

Direct Ritz method for random seismic response for non-uniform beams

  • Lin, J.H.;Williams, F.W.;Bennett, P.N.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.285-294
    • /
    • 1994
  • Based on a fast and accurate method for the stationary random seismic response analysis for discretized structures(Lin 1992, Lin et al. 1992), a Ritz method for dealing with such responses of continuous systems in developed. This method is studied quantitatively, using cantilever shear beams for simplicity and clarity. The process can be naturally extended to deal with various boundary conditions as well as non-uniform Bernoulli-Euler beams, or even Timoshenko beams. Algorithms for both proportionally and non-proportionally damped responses are described. For all of such damping cases, it is not necessary to solve for the natural vibrations of the beams. The solution procedure is very simple, and equally efficient for a white or a non-white ground excitation spectrum. Two examples are given where various power spectral density functions, variances, covariances and second spectral moments of displacement, internal force response, and their derivatives are calculated and analyses. Some Ritz solutions are compared with "exact" CQC solutions.

Generation of Artificial Earthquake Ground Motions considering Design Response Spectrum (설계응답스펙트럼을 고려한 인공지진파의 발생에 관한 연구)

  • 정재경;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.145-150
    • /
    • 1999
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This paper shows the process to generate nonstationary artificial earthquake ground motions considering target design response spectrum chosen by ATC14.

  • PDF

SATS: Structure-Aware Touch-Based Scrolling

  • Kim, Dohyung;Gweon, Gahgene;Lee, Geehyuk
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1104-1113
    • /
    • 2016
  • Non-linear document navigation refers to the process of repeatedly reading a document at different levels to provide an overview, including selective reading to search for useful information within a document under time constraints. Currently, this function is not supported well by small-screen tablets. In this study, we propose the concept of structure-aware touch-based scrolling (SATS), which allows structural document navigation using region-dependent touch gestures for non-sequential navigation within tablets or tablet-sized e-book readers. In SATS, the screen is divided into four vertical sections representing the different structural levels of a document, where dragging into the different sections allows navigating from the macro to micro levels. The implementation of a prototype is presented, as well as details of a comparative evaluation using typical non-sequential navigation tasks performed under time constraints. The results showed that SATS obtained better performance, higher user satisfaction, and a lower usability workload compared with a conventional structural overview interface.

Structural behavior of non-symmetrical steel cable-stayed bridges

  • Jorquera-Lucerga, Juan J.;Lozano-Galant, Jose A.;Turmo, Jose
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.447-468
    • /
    • 2016
  • Despite of the growing number of built examples, the analysis of non-symmetrical cable-stayed bridges has not received considerable attention from the researchers. In fact, the effects of the main design parameters in the structural behavior of these bridges are not addressed in detail in the literature. To fill this gap, this paper studies the structural response of a number of non-symmetrical cable-stayed bridges. With this aim, a parametric analysis is performed to evaluate the effect of each of the main design parameters (the ratio between the main and the back span length, the pylon, the deck and backstay stiffnesses, the pylon inclination, and the stay configuration) of this kind of bridges. Furthermore, the role of the geometrical nonlinearity and the steel consumption in stays are evaluated.

Seismic behavior of structural and non-structural elements in RC building with bypass viscous dampers

  • Esfandiyari, Reza;Nejad, Soheil Monajemi;Marnani, Jafar Asgari;Mousavi, Seyed Amin;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.487-497
    • /
    • 2020
  • During the last few decades, fluid viscous dampers have been significantly improved in terms of performance and reliability. Viscous dampers dissipate the input energy into heat and the increased temperature may damage internal seals of the damper. As a result, thermal compensation is crucial for almost all fluid viscous dampers. In this study, while referring to the main working principles of the recently developed bypass viscous damper in Iran, a comprehensive case study is conducted on a RC building having diagonal braces equipped with such viscous dampers. Experimental results of a small-scale bypass viscous damper is presented and it is shown that the currently available simplified Maxwell models can simulate behavior of the bypass viscous damper with good accuracy. Using a case study, contribution of bypass viscous dampers to seismic behavior of structural and non-structural elements are investigated. A designed procedure is adopted to increase damping ratio of the building from 3% to 15%. In this way, reductions of 25% and 13% in the required concrete and steel rebar materials have been achieved. From nonlinear time history analyses, it is observed that bypass viscous dampers can greatly improve seismic behavior of structural elements and non-structural elements.