• 제목/요약/키워드: non-steam

검색결과 260건 처리시간 0.026초

알루미늄 분말 점화용 고밀도 스팀 플라즈마 제트 온도장 및 방출 스펙트럼 측정 (Temperature Field and Emission Spectrum Measurement of High Energy Density Steam Plasma Jet for Aluminum Powder Ignition)

  • 이상협;임지환;이도형;윤웅섭
    • 한국추진공학회지
    • /
    • 제18권1호
    • /
    • pp.26-32
    • /
    • 2014
  • 본 연구에서 고에너지 금속 알루미늄의 효과적인 점화를 위해 개발한 직류 방식의 스팀 플라즈마 점화기 가스온도를 OH radical의 방출 스펙트럼을 사용하여 측정하였다. 플라즈마 제트온도는 초고온이므로 비접촉식 광학 계측 방법인 볼츠만 기울기법과 스펙트럼 비교 분석법을 이용하여 측정하였으며 각각의 방법은 정밀하게 검증 후 실험에 적용되었다. 플라즈마 점화기의 노즐 팁으로부터 30 mm 범위에서의 제트온도 측정결과 두 방법 모두 알루미늄의 점화온도(${\approx}2400K$) 이상의 2900 K ~ 5800 K를 확인할 수 있었다.

Solar tower combined cycle plant with thermal storage: energy and exergy analyses

  • Mukhopadhyay, Soumitra;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.29-45
    • /
    • 2016
  • There has been a growing interest in the recent time for the development of solar power tower plants, which are mainly used for utility scale power generation. Combined heat and power (CHP) is an efficient and clean approach to generate electric power and useful thermal energy from a single heat source. The waste heat from the topping Brayton cycle is utilized in the bottoming HRSG cycle for driving steam turbine and also to produce process steam so that efficiency of the cycle is increased. A thermal storage system is likely to add greater reliability to such plants, providing power even during non-peak sunshine hours. This paper presents a conceptual configuration of a solar power tower combined heat and power plant with a topping air Brayton cycle. A simple downstream Rankine cycle with a heat recovery steam generator (HRSG) and a process heater have been considered for integration with the solar Brayton cycle. The conventional GT combustion chamber is replaced with a solar receiver. The combined cycle has been analyzed using energy as well as exergy methods for a range of pressure ratio across the GT block. From the thermodynamic analysis, it is found that such an integrated system would give a maximum total power (2.37 MW) at a much lower pressure ratio (5) with an overall efficiency exceeding 27%. The solar receiver and heliostats are the main components responsible for exergy destruction. However, exergetic performance of the components is found to improve at higher pressure ratio of the GT block.

원전 증기 발생기 전열관 검사 자동화를 위한 지능형 통합 시스템 개발 (Development of an intelligent and integrated system for automatic inspection of steam-generator tubes in nuclear power plant)

  • 강순주;최유락;최성수;우희곤
    • 제어로봇시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.236-241
    • /
    • 1996
  • This paper presents a new eddy current testing system for inspecting tubes of steam generator in nuclear power plant. The proposed system adopted embedded expert system concept to automate tasks of the inspection such as inspection planning and flaw signal interpretation, and integrated all the tasks into a client/server type computing architecture using database management system. Therefore, human factor errors occurred during inspection could be minimized and the inspection data could be transferred in real-time. As a result, we can increase the level of inspection confidence and the productivity of a personal inspector. A prototype of the proposed system has been developed for 5 years and the test operation has been performed in domestic nuclear power plants.

  • PDF

접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구 (Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler)

  • 박호영;서상일
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

PGSFR BOP계통 배관 응력평가 적용방안 고찰 (Considerations of Stress Assessment Methodology for BOP Pipings of PGSFR)

  • 오영진;허남수;장영식
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.101-106
    • /
    • 2016
  • NSSS (Nuclear Steam Supply System) and BOP (Balance of Plant) design works for PGSFR (Prototype Gen-IV Sodium Fast Reactor) have been conducted in Korea. NSSS major components, e.g. reactor vessel, steam generator and secondary sodium main pipes, are designed according to the rule of ASME boiler and pressure vessel code division 5, in which DBA (Design by Analysis) methods are used in the stress assessments. However, there is little discussions about detail rules for BOP piping design. In this paper, the detail methodologies of BOP piping stress assessment are discussed including safety systems and non-safety system pipings. It is confirmed that KEPIC MGE(ASME B31.1) and ASME BPV code division 5 HCB-3600 can be used in stress assessments of non-safety pipes and class B pipes, respectively. However, class A pipe design according to ASME BPV code division 5 HBB-3200 has many difficulties applying to PGSFR BOP design. Finally, future development plan for class A pipe stress assessment method is proposed in this paper.

Removal of Pesticide (Endosulphan) from Water via Adsorption onto Activated Carbons Developed from Date Pits

  • Ashour, Sheikha.S.
    • Carbon letters
    • /
    • 제8권2호
    • /
    • pp.101-107
    • /
    • 2007
  • Activated carbons were prepared by impregnation of crushed clean date pits in concentrated solutions of phosphoric acid or zinc chloride followed by carbonization in absence of air at $600^{\circ}C$. Steam-activated carbon was prepared by gasifying $600^{\circ}C$-carbonization product at $950^{\circ}C$ to a burn-off = 50%. KOH- activated carbon was prepared by impregnating date pitscarbonization product obtained at $450^{\circ}C$ in concentrated KOH solution followed by carbonization at $840^{\circ}C$. Textural properties of these carbons were determined from nitrogen adsorption at $-196^{\circ}C$ and the chemistry of the carbon surface was investigated by determination and of the surface carbon-oxygen (C-O) groups using bases of variable strength and dilute HCl. The adsorption of endosulphan at $27^{\circ}C$ on all the carbons prepared was undertaken. Adsorption of this pesticide at 32 and $37^{\circ}C$ was also undertaken for steam-activated and KOH-activated carbons. Phosphoric acid-activated carbons and steamactivated carbons are mainly microporous and have high surface concentration of C-O groups of acidic nature. Steamactivated and KOH-activated carbons exhibited surface areas > 1000 $m^2/g$ and contain micro and non-micrpores. The adsorption of endosulphan was related to the surface area of non-micropores and was retarded by the high concentration of surface C-O groups. The thermodynamic properties indicated the feasibility of the adsorption process and the possible regeneration of the carbon for further use.

Numerical prediction of a flashing flow of saturated water at high pressure

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Moody, Frederick J.
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1173-1183
    • /
    • 2018
  • Transient fluid velocity and pressure fields in a pressurized water reactor (PWR) steam generator (SG) secondary side during the blowdown period of a feedwater line break (FWLB) accident were numerically simulated employing the saturated water flashing model. This model is based on the assumption that compressed water in the SG is saturated at the beginning and decompresses into the two-phase region where saturated vapor forms, creating a mixture of steam bubbles in water by bulk boiling. The numerical calculations were performed for two cases of which the outflow boundary conditions are different from each other; one is specified as the direct blowdown discharge to the atmosphere and the other is specified as the blowdown discharge to an extended calculation domain with atmospheric pressure on its boundary. The present simulation results obtained using the two different outflow boundary conditions were discussed through a comparison with the predictions using a simple non-flashing model neglecting the effects of phase change. In addition, the applicability of each of the non-flashing water discharge and saturated water flashing models for the confirmatory assessments of new SG designs was examined.

Development of a special thermal-hydraulic component model for the core makeup tank

  • Kim, Min Gi;Wisudhaputra, Adnan;Lee, Jong-Hyuk;Kim, Kyungdoo;Park, Hyun-Sik;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1890-1901
    • /
    • 2022
  • We have assessed the applicability of the thermal-hydraulic system analysis code, SPACE, to a small modular reactor called SMART. For the assessment, the experimental data from a scale-down integral-test facility, SMART-ITL, were used. It was conformed that the SPACE code unrealistically calculates the safety injection flow rate through the CMT and SIT during a small-break loss-of-coolant experiment. This unrealistic behavior was due to the overprediction of interfacial heat transfer at the steam-water interface in a vertically stratified flow in the tanks. In this study, a special thermal-hydraulic component model has been developed to realistically calculate the interfacial heat transfer when a strong non-equilibrium two-phase flow is formed in the CMT or SIT. Additionally, we developed a special heat structure model, which analytically calculates the heat transfer from the hot steam to the cold tank wall. The combination of two models for the tank are called the special component model. We assessed it using the SMART-ITL passive safety injection system (PSIS) test data. The results showed that the special component model well predicts the transient behaviors of the CMT and SIT.

알칼리/알칼리토금속 양이온을 치환한 Y형 및 ZSM-5 제올라이트의 NO 흡착 특성 (Adsorption Characteristics of Nitrogen Monoxide on Y-type and ZSM-5 Zeolites Exchanged with Alkali/Alkaline-earth Metal Cation)

  • 김철현;이창섭
    • 공업화학
    • /
    • 제16권6호
    • /
    • pp.857-864
    • /
    • 2005
  • 탈알루미늄 및 알칼리/알칼리토금속 양이온으로 치환한 Y형 및 ZSM-5 제올라이트 촉매를 제조하였다. 전처리 후 Y형 및 ZSM-5 제올라이트의 Si/Al비는 증가하였고, bulk보다는 표면에서의 Si/Al비가 더 큰 것을 알 수 있었다. 전처리에 의해 제조된 Y형 및 ZSM-5 제올라이트의 골격구조 파괴는 주로 탈알루미늄 처리과정에서 Al 이온의 탈리에 의한 것이며, framework이 감소하고 non-framework이 증가하였다. 이러한 현상은 스팀처리 시간이 많아질수록 증가하였고, 양이온으로 치환함에 따라 더욱 심화되었음을 알 수 있었다. NO-TPD 실험결과, 전처리된 Y형 및 ZSM-5 제올라이트는 탈착봉우리가 저온으로 이동하였다. 또한 스팀처리 시간이 많은 촉매물질일수록 탈착온도가 더 낮은 온도로 이동하였다. 촉매의 활성은 치환된 양이온, Si/Al 함량비 및 탈알루미늄으로 변화된 골격구조에서 framework과 non-framework의 비율에 의존하였다.

조강시멘트를 사용한 초조강 모르타르 개발에 관한 연구 (Study on the Development of Super-High-Early-Strength Mortar Using the Hardening catalyst and High early strength cement)

  • 조인성;허연옥;민태범;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.217-219
    • /
    • 2012
  • In this study, the experiment was conducted in the level of mortar as one of the basic studies on pre-cast concrete which acceleration curing is not done. This study has the purpose to develop the strength of mortar into 20MPa within 6 hours in the condition of room temperature using admixtures which can accelerate C3S hydration reaction. In this experiment, W/C was fixed into 20%, PCE which can stimulate C3S was used as an accelerating admixture. From the results of this experiment, maximum content of accelerating admixture was 1%. Also, as more than 20MPa was measured through 6-hour compressive strength, it can be known that strength can be developed without steam-curing.

  • PDF