• 제목/요약/키워드: non-stationary input

검색결과 53건 처리시간 0.026초

A Square Root Normalized LMS Algorithm for Adaptive Identification with Non-Stationary Inputs

  • Alouane Monia Turki-Hadj
    • Journal of Communications and Networks
    • /
    • 제9권1호
    • /
    • pp.18-27
    • /
    • 2007
  • The conventional normalized least mean square (NLMS) algorithm is the most widely used for adaptive identification within a non-stationary input context. The convergence of the NLMS algorithm is independent of environmental changes. However, its steady state performance is impaired during input sequences with low dynamics. In this paper, we propose a new NLMS algorithm which is, in the steady state, insensitive to the time variations of the input dynamics. The square soot (SR)-NLMS algorithm is based on a normalization of the LMS adaptive filter input by the Euclidean norm of the tap-input. The tap-input power of the SR-NLMS adaptive filter is then equal to one even during sequences with low dynamics. Therefore, the amplification of the observation noise power by the tap-input power is cancelled in the misadjustment time evolution. The harmful effect of the low dynamics input sequences, on the steady state performance of the LMS adaptive filter are then reduced. In addition, the square root normalized input is more stationary than the base input. Therefore, the robustness of LMS adaptive filter with respect to the input non stationarity is enhanced. A performance analysis of the first- and the second-order statistic behavior of the proposed SR-NLMS adaptive filter is carried out. In particular, an analytical expression of the step size ensuring stability and mean convergence is derived. In addition, the results of an experimental study demonstrating the good performance of the SR-NLMS algorithm are given. A comparison of these results with those obtained from a standard NLMS algorithm, is performed. It is shown that, within a non-stationary input context, the SR-NLMS algorithm exhibits better performance than the NLMS algorithm.

Nonstationary Random Process를 이용한 인공지진파 발생 -설계응답스펙트럼에 의한 파워스펙트럼의 조정- (Generation of Artificial Earthquake Ground Motions using Nonstationary Random Process-Modification of Power Spectrum Compatible with Design Response Spectrum-)

  • 김승훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.61-68
    • /
    • 1999
  • In the nonlinear dynamic structural analysis the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary modulation function and a power spectral density function to describe such non-stationary characteristics. Satio and Wen(1994) proposed a non-stationary stochastic process model to generate earthquake ground motions which are compatible with design reponse spectrum at sites in Japan. this paper shows the process to modify power spectrum compatible with target design response spectrum for generating of nonstationary artificial earthquake ground motions. Target reponse spectrum is chosen by ATC14 to calibrate the response spectrum according to a give recurrence period.

  • PDF

Seismic design of structures using a modified non-stationary critical excitation

  • Ashtari, P.;Ghasemi, S.H.
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.383-396
    • /
    • 2013
  • In earthquake engineering area, the critical excitation method is an approach to find the most severe earthquake subjected to the structure. However, given some earthquake constraints, such as intensity and power, the critical excitations have spectral density functions that often resonate with the first modes of the structure. This paper presents a non-stationary critical excitation that is capable of exciting the main modes of the structure using a non-uniform power spectral density (PSD) that is similar to natural earthquakes. Thus, this paper proposes a new method to estimate the power and intensity of earthquakes. Finally, a new method for the linear seismic design of structures using a modified non-stationary critical excitation is proposed.

Non-stationary Sparse Fading Channel Estimation for Next Generation Mobile Systems

  • Dehgan, Saadat;Ghobadi, Changiz;Nourinia, Javad;Yang, Jie;Gui, Guan;Mostafapour, Ehsan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1047-1062
    • /
    • 2018
  • In this paper the problem of massive multiple input multiple output (MIMO) channel estimation with sparsity aware adaptive algorithms for $5^{th}$ generation mobile systems is investigated. These channels are shown to be non-stationary along with being sparse. Non-stationarity is a feature that implies channel taps change with time. Up until now most of the adaptive algorithms that have been presented for channel estimation, have only considered sparsity and very few of them have been tested in non-stationary conditions. Therefore we investigate the performance of several newly proposed sparsity aware algorithms in these conditions and finally propose an enhanced version of RZA-LMS/F algorithm with variable threshold namely VT-RZA-LMS/F. The results show that this algorithm has better performance than all other algorithms for the next generation channel estimation problems, especially when the non-stationarity gets high. Overall, in this paper for the first time, we estimate a non-stationary Rayleigh fading channel with sparsity aware algorithms and show that by increasing non-stationarity, the estimation performance declines.

설계응답스펙트럼을 고려한 인공지진파의 발생에 관한 연구 (Generation of Artificial Earthquake Ground Motions considering Design Response Spectrum)

  • 정재경;한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.145-150
    • /
    • 1999
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This paper shows the process to generate nonstationary artificial earthquake ground motions considering target design response spectrum chosen by ATC14.

  • PDF

Impulse 함수 기반 목표응답스펙트럼 맞춤형 지진파 보정 알고리즘의 적용성 평가 (Evaluation of Applicability of Impulse function-based Algorithm for Modification of Ground Motion to Match Target Response Spectrum)

  • 김현관;박두희
    • 한국지반환경공학회 논문집
    • /
    • 제12권4호
    • /
    • pp.53-63
    • /
    • 2011
  • 동적 지진해석 수행 시 적절한 입력지진파를 선정 생성하는 것은 매우 중요하다. 현재 국내에서는 일반적으로 국외에서 계측된 강진 기록이나 인공지진파가 입력지진파로 사용된다. 계측지진기록은 지진파의 고유성질인 시간에 따라서 주파수 특성이 변이하는 비정상(Non-Stationary) 특성을 가지고 있지만 설계 응답스펙트럼과는 일치하지 않으며 주파수영역에서 생성된 인공지진파는 설계 응답스펙트럼과는 일치하지만 정상(Stationary) 특성을 가지고 있는 단점이 있다. 본 연구에서는 계측기록의 Non-stationary 특성을 보존하되 동시에 설계 응답스펙트럼에 상응하는 지진파를 생성하였다. 적용된 기법은 Impulse 함수를 이용하여 시간영역에서 지진기록을 목표 스펙트럼에 상응하도록 보정하는 알고리즘이다. 적용 결과, 시간영역 변화 알고리즘은 성공적으로 계측 지진기록을 설계 응답스펙트럼와 일치하도록 조정할 수 있으며 원 지진기록의 Non-stationary 특성을 보존하는 것으로 나타났다. 나아가 계측 지진기록과 보정된 지진기록을 적용한 비선형 지반응답해석을 수행한 결과, 보정된 지진파를 이용한 결과가 보다 합리적인 것으로 나타났다. 본 연구에서 변환된 지진기록은 기존 기록의 문제점을 보완하는 진보된 입력지진파인 것으로 나타났으며 추후 지진해석 시 이를 준용하는 것이 합리적일 것으로 판단된다.

A Non-Stationary Geometry-Based Cooperative Scattering Channel Model for MIMO Vehicle-to-Vehicle Communication Systems

  • Qiu, Bin;Xiao, Hailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2838-2858
    • /
    • 2019
  • Traditional channel models for vehicle-to-vehicle (V2V) communication usually assume fixed velocity in static scattering environment. In the realistic scenarios, however, time-variant velocity for V2V results in non-stationary statistical properties of wireless channels. Dynamic scatterers with random velocities and directions have been always utilized to depict the non-stationary statistical properties of the channel. In this paper, a non-stationary geometry-based cooperative scattering channel model is proposed for multiple-input multiple-output (MIMO) V2V communication systems, where a birth-death process is used to capture the appearance and disappearance dynamic properties of moving scatterers that reflect the time-variant time correlation and Doppler spectrum characteristics. Moreover, our model has more straight and concise to study the impact of the vehicular traffic density on channel characteristics and thus avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions. The numerical results validate our analysis and demonstrate that setting important parameters of our model can appropriately build up more purposeful measurement campaigns in the future.

비선형, 비정상 시계열 예측을 위한 RBF(Radial Basis Function) 회로망 구조 (RBF Network Structure for Prediction of Non-linear, Non-stationary Time Series)

  • 김상환;이종호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.168-175
    • /
    • 1999
  • In this paper, a modified RBF(Radial Basis Function) network structure is suggested for the prediction of a time-series with non-linear, non-stationary characteristics. Coventional RBF network predicting time series by using past outputs sense the trajectory of the time series and react when there exists strong relation between input and hidden activation function's RBF center. But this response is highly sensitive to level and trend of time serieses. In order to overcome such dependencies, hidden activation functions are modified to react to the increments of input variable and multiplied by increment(or dectement) for prediction. When the suggested structure is applied to prediction of Macyey-Glass chaotic time series, Lorenz equation, and Rossler equation, improved performances are obtained.

  • PDF

비선형, 비정상 시계열 예측을 위한RBF(Radial Basis Function) 신경회로망 구조 (RBF Neural Network Sturcture for Prediction of Non-linear, Non-stationary Time Series)

  • 김상환;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2299-2301
    • /
    • 1998
  • In this paper, a modified RBF (Radial Basis Function) neural network structure is suggested for the prediction of time series with non-linear, non-stationary characteristics. Conventional RBF neural network predicting time series by using past outputs is for sensing the trajectory of the time series and for reacting when there exists strong relation between input and hidden neuron's RBF center. But this response is highly sensitive to level and trend of time serieses. In order to overcome such dependencies, hidden neurons are modified to react to the increments of input variable and multiplied by increments(or decrements) of out puts for prediction. When the suggested structure is applied to prediction of Lorenz equation, and Rossler equation, improved performances are obtainable.

  • PDF

Formulating Analytical Solution of Network ODE Systems Based on Input Excitations

  • Bagchi, Susmit
    • Journal of Information Processing Systems
    • /
    • 제14권2호
    • /
    • pp.455-468
    • /
    • 2018
  • The concepts of graph theory are applied to model and analyze dynamics of computer networks, biochemical networks and, semantics of social networks. The analysis of dynamics of complex networks is important in order to determine the stability and performance of networked systems. The analysis of non-stationary and nonlinear complex networks requires the applications of ordinary differential equations (ODE). However, the process of resolving input excitation to the dynamic non-stationary networks is difficult without involving external functions. This paper proposes an analytical formulation for generating solutions of nonlinear network ODE systems with functional decomposition. Furthermore, the input excitations are analytically resolved in linearized dynamic networks. The stability condition of dynamic networks is determined. The proposed analytical framework is generalized in nature and does not require any domain or range constraints.