• 제목/요약/키워드: non-solvent

검색결과 484건 처리시간 0.026초

Flip Chip Non-wet 개선 및 신뢰성 향상을 위한 Low Residue Flux 구현 방안 연구 (A Study on Low Residue Flux for Improving Flip Chip Non-wet and Reliability)

  • 이현숙;김민석;김태훈;문기일
    • 마이크로전자및패키징학회지
    • /
    • 제28권2호
    • /
    • pp.45-50
    • /
    • 2021
  • Flip chip 제품의 난이도 증가에 따라 solder wetting 및 신뢰성 관점에서 강점을 갖는 flux 소재에 대한 관심이 높아지고 있다. 지용성 flux의 경우 별도의 세정 공정이 없기 때문에 공정 효율화 측면에서 유리하나, 리플로우 공정이후 반응을 마친 잔여물이 잔존하게 되는 경우 Cu migration 및 delamination을 발생시킬 수 있다. 본 연구에서는 저잔사 flux 구현을 위해 신규 resin에 적합한 solvent 및 activator를 변경 하였으며, package 환경에서 non-wet 및 신뢰성 개선 유무를 확인하였다. 저장 안정성 평가를 통해 신규 소재에 대한 안정성을 확보하였으며, boiling point가 상이한 solvent와 activator 2종 적용 및 activator 함량 증대를 통해 non-wet 미 발생 flux 소재를 확보하였다. 해당 소재에 대한 신뢰성 검증 이후 평면 분석 결과 flux residue 기인성 delamination 현상은 발견되지 않았으며, 이를 통해 저잔사 flux에 대한 최종 조성을 확보하였다.

Preparation and characterization of polyethersulfone microfiltration membrane by 2-methoxy ethanol nonsolvent additive

  • Shin, Se-Jong;Kim, Hyung-Sik;Min, Byoung-Ryul
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.166-169
    • /
    • 2004
  • Microfiltration membranes were prepared from aromatic polyethersulfone (PES) polymer, using aprotic solvent (N-methyl-2-pyrrolidone, NMP) and non-solvent additive (2-methoxy ethanol, 2-ME) by the phase inversion co-process of the vapor-induced phase inversion (VIPI) and the nonsolvent-induced phase inversion (NIPI). According to the change of the additive amount, the solvent amount and the relative humidity, membrane characterization was studied. The non-solvent additive in casting solution played an important role in membrane morphology. During the vapor-induced phase inversion, the relative humidity led to water sorption on the surface of casting dope at which pore formation was generated. The prepared membranes were characterized by scanning electron microscope observations, measurements of capillary flow porometer and pure water flux (PWP). Also the thermodynamic and kinetic properties of membrane-forming system were studied through coagulation value, light transmittance and viscosity.

  • PDF

Effect of Deuterated Solvents on the Excited State Photophysical Properties of Curcumin

  • Barik, A.;Goel, N.K.;Priyadarsini, K.I.;Mohan, Hari
    • Journal of Photoscience
    • /
    • 제11권3호
    • /
    • pp.95-99
    • /
    • 2004
  • Optical absorption and emission studies have been carried out to understand the effect of deuterium on the solvent dependent photophysical properties of curcumin in deuterated solvents such as $CDCl_3,\;(CD_3)_2SO,\;(CD_3)_2CO,\;CD_3OD\;and\;CD_3CN$. Optical absorption spectral studies showed that there is no significant shift in absorption maxima compared to the non-deuterated solvent. The fluorescence maxima shows significant shift with polarity of solvent but not much affected by the deuteration. The fluorescence quantum yield of curcumin increased marginally in almost all the deuterated solvents, indicating reduction in the non-radiative pathways. The fluorescence decay was biexponential in all the solvents and the average fluorescence lifetime was not much affected with deuteration, but showed decrease with increasing solvent polarity. Based on these studies, it is concluded that intermolecular hydrogen transfer is only partially responsible for the excited state deactivation of curcumin.

  • PDF

비수용성 용매를 이용한 탈염화 가능한가?: 적용 가능한 용매선정 기법 제안 (Can Non-aqueous Solvent Desalinate?: Suggestion of the Screening Protocol for Selection of Potential Solvents)

  • 최오경;서준호;김경수;김두일;이재우
    • 한국물환경학회지
    • /
    • 제36권1호
    • /
    • pp.48-54
    • /
    • 2020
  • This paper presents a screening protocol for the selection of solvents available for the solvent extraction desalination process. The desalination solvents hypothetically and theoretically require the capability of (1) Forming hydrogen bonds with water, (2) Absorbing some water molecules into its non-polar solvent layer, (3) Changing solubility for water-solvent separation, and (4) Rejecting salt ions during absorption. Similar to carboxylic acids, amine solvents are solvent chemicals applicable for desalination. The key parameter for selecting the potential solvent was the octanol-water partitioning coefficient (Kow) of which preferable value for desalination was in the range of 1-3. Six of the 30 amine solvents can absorb water and have a variable, i.e., temperature swing solubility with water molecule for water-solvent separation. Also, the hydrogen bonding interaction between solvent and water must be stronger than the ion-dipole interaction between water and salt, which means that the salt ions must be broken from the water and only water molecules absorbed for the desalination. In the final step, three solvents were selected as desalination solvents to remove salt ions and recover water. The water recovery of these three solvents were 15.4 %, 2.8 %, 10.5 %, and salt rejection were 76 %, 98 %, 95 %, respectively. This study suggests a new screening protocol comprising the theoretical and experimental approaches for the selection of solvents for the desalination method which is a new and challenges the desalination process in the future.

PET 나노섬유 강화 PEI 막의 제조 및 특성화 연구, 그에 따른 유기용매 나노여과막 가능성 검증 (Preparation and Characterization Study of PET Nanofiber-reinforced PEI Membrane, Investigation of the Application of Organic Solvent Nanofiltration Membrane)

  • 홍성배;임광섭;권동준;남상용
    • 접착 및 계면
    • /
    • 제24권1호
    • /
    • pp.17-25
    • /
    • 2023
  • 본 연구는 투명 폐 Polyethylene Terephthalate (PET)병을 재활용하여 지지체를 제조 후에 Polyetherimide (PEI)를 이용하여 친환경적인 유기용매나노여과막 (Organic Solvent Nanofiltration)에 이용하고자 하였다. 제조된 복합막은 먼저, PET 지지체는 전기방사를 통해 제조를 하였으며 이후 내용매성이 우수한 PEI를 이용하여 지지체 위에 캐스팅하였고 비용매 유도상분리(Non-solvent Induced Phase Separation, NIPS) 방법을 이용하여 유기용매나노여과막을 제조하였다. 먼저 막제조에 앞서 제조된 PET 지지체는 모폴로지 분석을 통해 섬유의 직경과 인장강도를 파악하였으며 유기용매나노여과막의 최적 지지체 조건을 확인하였다. 이후 제조된 PET/PEI 복합막은 PEI의 농도에 따른 유기용매나노여과막으로서의 성능을 파악하기 위하여 에탄올에 분자량 697 g/mol을 가지는 Congo red의 제거율을 확인하였으며 최종으로 Congo red의 제거율이 90%이상의 제거율을 가지는 최적의 PET/PEI 복합막을 확인하였다.

New Separators Based on Non-Polyolefin Polymers for Secondary Lithium Batteries

  • Seol, Wan-Ho;Lee, Yong-Min;Lee, Jun-Young;Han, Young-Dal;Ryu, Myung-Hyun;Park, Jung-Ki
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.82-87
    • /
    • 2007
  • New porous separators based on non-polyolefin materials including the blend of poly (vinyl chloride) (PVC)/poly (vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)/poly(methyl methacrylate) (PMMA), and the porous separator based on poly (vinylidene fluoride) (PVdF) were prepared by phase inversion method. The porosity and morphology were controlled with phase inversion rate, which is governed by the relative content of non-solvent and solvent in coagulation bath. To enhance tensile strength, the solvent pre-evaporation and uni-axial stretching processes were applied. The ionic conductivity was increased with increasing stretching ratio, and tensile strength was increased with increasing solvent pre-evaporation time and stretching ratio. The 200% stretched PVdF separator showed 56 MPa of tensile strength, and the ionic conductivity of the stretched PVdF separator was $8.6{\times}10^{-4}\;S\;cm^{-1}\;at\;25^{\circ}C$.

비변색타입의 무용제형 상온 액상수지 (Non-Solvent Liquid Resin of Non-Discoloration Type at Room Temperature)

  • 문진복;목동엽;김규현
    • Korean Chemical Engineering Research
    • /
    • 제47권6호
    • /
    • pp.669-675
    • /
    • 2009
  • 연질 PVC 대체를 위한 비변색 타입의 무용제형 상온 액상수지를 폴리올을 경화제로 사용하는 폴리우레탄수지 구조제어 설계를 통한 프리폴리머 합성방법을 응용하여 제조할 수 있었다. Macro-glycol, 분자량 및 반응조건의 영향 등을 고찰하여 최적의 작업성과 물성을 가지는 무용제형 상온액상수지를 제조하였으며, 우수한 기계적인 특성과 함께 유색작업을 위한 안료의 분산성 등에서도 우수하였고, Tg가 $-40^{\circ}C$의 값을 나타내었다. 또한 자외선 노출이나 질소산화물에 의한 황변특성도 개선할 수 있었다.

활성탄관에 포집된 혼합 유기용제의 보조탈착용매 변화에 따른 탈착률 비교 (Desorption Efficiency of Various Cosolvents for Organic Solvent Mixtures Collected on Activated Charcoal Tube)

  • 김강윤;노인봉;김현욱
    • 한국산업보건학회지
    • /
    • 제6권2호
    • /
    • pp.209-221
    • /
    • 1996
  • The purpose of this study was to find a suitable cosolvent to $CS_2$ so that desorption efficiency can be improved for both polar and non-polar organic solvent mixtures collected on an activated charcoal tube. Cosolvents added to $CS_2$ include: DMF(N,N-dimethylformamide): $CS_2$ (v/v 1:99), DMF:$CS_2$(v/v 3:97), BC (butyl carbitol, 2-(2-butoxy ethoxy) ethanol):$CS_2$(v/v 1:99), and BC:$CS_2$(v/v 3:97)). The results obtained were as follows : 1. Comparing the desorption efficiency of $CS_2$ with those of $CS_2$ with 1, 3, 5 % DMF and 1, 3 % BC cosolvents for two different groups of charcoal tubes each containing 8 different polar and non-polar organic solvents with 3 different concentration levels, the desorption efficiencies of the cosolvent-added $CS_2$ increased significantly for all polar organic solvents regardless of concentration levels tested. For non-polar organic solvents, no noticeable improvement was detected except xylene and trichloroethylene. The desorption efficiency of xylene increased significantly while that of trichloroethylene increased significantly at the lowest concentration level tested. 2. Either 5 % DMF or 3 % BC was the most suitable cosolvent because the desorption efficiency for non-polar organic solvent mixtures was similar or slightly improved compared with that of $CS_2$, while those of for polar organic solvent mixtures were above 75 % except for cyclohexanone. 3. The smallest variations in desorption efficiency represented by the ratio calculated from the maximum to minimum desorption efficiency for all concentration levels tested were found when 3 % BC was used as a cosolvent. The above results indicate that the desorption efficiency of $CS_2$ particularly for polar organic solvent mixtures collected on a charcoal tube can be significantly improved by the use of cosolvents such as 5 % DMF or 3 % BC. A caution, however, is in order for selecting a cosolvent whenever the cosolvent itself is being used in the workplace or the impurities contained in the cosolvent may interfere with the analytical results. In addition, to improve desorption efficiencies for such organic solvents as cyclohexanone or ketones, it is recommended to use suitable collection and desorption media other than the traditional method of charcoal tube collection/$CS_2$ desorption.

  • PDF

Compatibility at Polymer/Polymer Mixture Interfaces in the Presence of Solvent

  • Yoon, Kyung-Sup;Park, Hyung-Suk;Lee, Jo-Woong;Chang, Tai-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권3호
    • /
    • pp.214-221
    • /
    • 1994
  • We present some results obtained from theoretical study on a non-symmetrical A/BC polymeric system including solvent which consists of two phases, a polymeric phase A on one side and a mixture of polymers B (as a compatibilizer) and C on the other in the presence of a solvent. By employing the functional integral techniques we derive the mean-field equations and solve them numerically to deduce the physical properties of the interface involving the polymers and solvent concentration profiles in the limit that molecular weights of all the polymers involved tend to infinity. The calculations are performed for typical values of the Flory interaction parameters and for the volume fraction of polymer B in the asymptotic phase and of solvent. In the polymers/solvent blend under consideration the interfacial adsorption of polymer B, the solvent concentration, and degrees of the specific interaction between the polymers are found to play important roles in modification of the interfacial properties.

NaHSO4/SiO2: Solvent-Free 반응 조건에서 β-Enaminone들과 2-Methylquinolin-4(1H)-One들의 합성을 위한 효율적인 촉매 (NaHSO4/SiO2: An Efficient Catalyst for the Synthesis of β-Enaminones and 2-Methylquinolin-4(1H)-Ones under Solvent-Free Condition)

  • Sapkal, Suryakant B.;Shelke, Kiran F.;Shingate, Bapurao B.;Shingare, Murlidhar S.
    • 대한화학회지
    • /
    • 제54권6호
    • /
    • pp.723-726
    • /
    • 2010
  • 마이크로 반응을 이용하여 $NaHSO_4/SiO_2$을 촉매로 하는 solvent-free 합성을 통하여 $\beta$-enaminone 과 2-methylquinolin-4(1H)-one 및 그 유도체를 합성하는 효율적인 방법을 개발하였다. 반응 시간이 짧고, 수율이 좋았으며, 마이크로웨이브를 사용하지 않는 반응보다는 높은 선택성, 간단성, 무용매 반응 및 친환경적인 반응이다.