• Title/Summary/Keyword: non-sintering cement

Search Result 21, Processing Time 0.022 seconds

The Compressive Strength Development of Briquette Ash by Alkali Activated Reaction (알칼리 활성반응에 의한 Briquette ash의 강도 발현 특성)

  • Seo, Myeong-Deok;Lee, Su-Jeong;Park, Hyun-Hye;Kim, Yun-Jong;Lee, Su-Ok;Kim, Taik-Nam;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.463-469
    • /
    • 2008
  • Non-sintering cement was manufactured with briquette ash. Alkali activator for compression bodies used a NaOH solution. In order to apply alkali-activated briquette ash and the non-sintering cement to concrete, several experimental studies were performed. It was necessary to study the binder obtained by means of a substitute for the cement. This study concentrated on strength development according to the concentration of NaOH solution, the curing temperature, and the curing time. The highest compressive strength of compression bodies appeared as $353kgf/cm^2$ cured at $80^{\circ}C$ for 28 days. This result indicates that a higher curing temperature is needed to get a higher strength body. Also, geopolymerization was examined by SEM and XRD analysis after the curing of compression bodies. According to SEM and XRD, the main reaction product in the alkali activated briquette ash is aluminosilicate crystal.

Hydration Reaction of Non-Sintering Cement Using Inorganic Industrial Waste as Activator (무기계 산업폐기물을 자극제로 이용한 비소성 시멘트의 수화반응)

  • Mun, Kyoung-Ju;Lee, Chol-Woong;So, Seung-Young;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.267-274
    • /
    • 2006
  • Greenhouse gas reduction will be highlighted as the most pending question in the cement industry in future because the production of Portland cement not only consumes limestone, clay, coal, and electricity, but also release waste gases such as $CO_2,\;SO_3$, and NOX, which can contribute to the greenhouse effect and acid rain. To meet the increase of cement demand and simultaneously comply with the Kyoto Protocol, cement that gives less $CO_2$ discharge should be urgently developed. This study aims to manufacture non-sintering cement(NSC) by adding phosphogypsum(PG) and waste lime(WL) to granulated blast furnace slag(GBFS) as sulfate and alkali activators. This study also Investigates the hydration reaction of NSC through analysis of scanning electron microscopy(SEM), X-ray diffraction(XRD), differential thermal analysis(DTA), and pH. Results obtained from analysis of the hydrate have shown that the glassy films of GBFS are destroyed by the activation of alkali and sulfate, ions eluted from the inside of GBFS react with PG and produce ettringite, and consequently the remaining component in GBFS slowly produced C-5-H(I) gel. Here, PG is considered not only to play the role of simple activator, but also to work as a binder reacting with GBFS.

Pore Structure of Non-Sintered Cement Matrix (비소성 시멘트 경화체의 공극구조)

  • Mun Kyoung-Ju;Park Won-Chun;Soh Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.329-332
    • /
    • 2004
  • This study aims to manufacture non-sintering cement(NSC) by adding phosphogypsum(PG) and waste lime(WL) to granulated blast furnace slag(GBFS) as sulfate and alkali activators. This study also investigates the pore structure of NSC Matrix. The result of experiment of pore structure properties, showed no considerable difference for total pore volume by cement mixing ratio but shows a large distinction in distribution of pore diameter. On the whole, pore-diameter of paste of NSC show that occupation ratio of pore diameter below 10mm is larger and is smaller than OPC and BFSC at pore diameter of over 10nm. Such a reason is that the hydrate like CSH gel and ettringite formed dense pore structure of NSC matrix.

  • PDF

Engineering Characteristics of Non-sintering Binder-stabilized Mixture using Industrial By-Products (산업부산물을 이용한 비소성 고화제 혼합토의 역학적 특성)

  • Yun, Dae-Ho;Mun, Kyoung-Ju;Kim, Yun-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.140-146
    • /
    • 2014
  • This study investigated the engineering characteristics of non-sintering binder-stabilized mixtures consisting of different ratios of a hardening agent(3%, 6%, 9%, 12%) for recycling industrial by-products through several series of laboratory tests. The hardening agents consisted of two kinds of non-sintering binders(NSB-1, NSB-2), which were developed by using inter-chemical reactions among blast furnace slag, phospho-gypsum, and an alkali activator. In addition, ordinary Portland cement(OPC) was used to compare the engineering characteristics of the stabilized mixture. An unconfined compressive test showed that the unconfined compressive strength increased with the curing time and mixing ratio. Experimental test results indicated that the 7-day strength of the NSB-1 mixture was similar to that of the OPC mixture. However, its 28-day strength was higher than that of the OPC mixture. The secant module of elasticity showed a range of $E_{50}=(42-109)q_u$ regardless of the agents. Based on the results of triaxial tests, the cohesion and friction angle increased with the mixing ratio.

Properties of Non-Sintered Hwangtoh Mortar Using Eco-Friendly Inorganic Binding Material (친환경 무기결합재를 이용한 비소성 황토모르타르의 특성)

  • Heo, Jun-Oh;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.499-506
    • /
    • 2014
  • A number of studies on eco-friendly and healthy building materials are being conducted as modern people are becoming more conscious about health and the environment they live in. Among those materials, studies on Hwangtoh are the most prevalent but due to its strength, crack coming from drying shrinkage, and susceptibility to water, the usage of Hwangtoh is incomplete and limited to be used as a common building material. Cement concrete, considered as one of the most widely used building materials, is extensively used in construction because it is economical, easily accessible and moldable and has proper compressive strength. Due to carbon dioxide created in the process of making cement concrete, it is recognized as pollution. Accordingly, there are a lot of studies on reduction of carbon dioxide in cement concrete industry. There are increasing numbers of researches as well as developments on Hwangtoh or traditional construction materials used in South Korea to reduce the environmental problems. Therefore, this study suggests the basic features of the construction material that can replace cement concrete in the future with the non-sindtered cement mixed with non-sintering hwangtoh which is made with the furnace slag and multiple stimulants.

Preparation of Non-Sintering High Strength Aggregate using Coal ash (석탄회를 이용한 비소성 고강도 골재의 제조)

  • 김도수;박대영;문정호;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.233-238
    • /
    • 1998
  • For substitution for crushed sand, high strength aggregate for cement and concrete using coal ash as a main material was prepared and then compared its physical properties with those of crushed sand. Effect of mix proportion change of raw materials on the property of aggregate was checked. On the basis of these experimental results we are going to comprehend the reutilization of coal ash and utilize a basic data for judging possibility the substitution of crushed sand.

  • PDF

Mechanical and Germination Characteristics of Stabilized Dredged Soil (고화준설토의 역학적 특성과 식생 발아 특성)

  • Lee, Miji;Mun, Kyoungju;Yoon, Gillim;Eum, Hyunmi;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • In this paper, mechanical and germination characteristics of stabilized dredged soils were investigated to recycle dredged soil in eco-friendly manner such as waterfront construction. Non sintering binder (NSB), which was developed by using interchemical reactions between slag, high-calcium fly ash, alkali activator on the dredged marine clay, was added to dredged soil. Ordinary portland cement was also used for the comparison of two binders. Experimental tests such as flow test and unconfined compressive test were carried out to evaluate characteristics of stabilized dredged soil. Leaching test, pH measure, vegetation germination test were also conducted to consider environmental applicability. The unconfined compressive tests shows that unconfined compressive strength (UCS) also increases with the increase of curing time and mixed ratio. UCS of NSB mixtures were higher than those of OPC mixtures. Germination tests showed that germination and sprouting date are better in NSB mixture than OPC mixture. It can be explained that germination decreased as pH and 7-day strength increased.

Microstructure of Non-Sintered Inorganic Binder using Phosphogypsum and Waste Lime as Activator

  • Kim, Ji-Hoon;An, Yang-Jin;Mun, Kyung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.305-312
    • /
    • 2018
  • This study is about the development of a non-sintered binder (NSB) which does not require a sintering process by using the industrial by-products Phosphogypsum (PG), Waste Lime (WL) and Granulated Blast Furnace Slag (GBFS). In this report, through SEM analysis of the NSB paste hardening body, micropore analysis of paste using the mercury press-in method and microstructure observation were executed to consider the influence of the formation of the pore structure and the distribution of pore volume on strength, and the following conclusions were reached. 1) Pore structure of NSB paste of early age is influenced by hydrate generation amount by GBFS and activator. 2) Through observing the internal microstructure of NSB binder paste, it was found that the strength expression at early age due to hydration reaction was achieved with a large amount of ettringite serving as the frame with C-S-H gel generated at the same time. It was confirmed that C-S-H gel wrapped around ettringite, and as time passed, the amount generated continually increased, and C-S-H gel tightly filled the pores of hardened paste, forming a dense network-type web structure. 3) For NSB-type cement, the degree of formation of gel pores below $10{\mu}m$ had a greater influence on strength improvement than simple pore reduction by charging capillary pores, and the pore size that had the greatest effect on strength was micropores with diameter below $10{\mu}m$.

Strength Development and Drying Shrinkage in Recycled Coal-Ash Building Material (석탄회를 재활용한 건설소재의 강도발현 및 건조수축)

  • Jo, Byung-Wan;Kim, Young-Jin;Park, Jong-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.670-678
    • /
    • 2003
  • Recently, since industrial waste and life waste leaped into a pollution source, the building material used now a days is striking the limit. The purpose of this paper is to investigate an application of recycled coal ash using non-sintering method in the construction field. Accordingly, compressive strength, elastic modulus and drying shrinkage were experimentally studied for hardened coal ash using the non-sintering method. Also, Lineweaver and Burk method were applied to the regression analysis of drying shrinkage for the proposal equation. Elastic modulus, compressive strength of material become the basis properties of structural design. And these properties by age for hardened coal ash are important because of change by pozzolan reaction. This hardened coal ash is weak for tensile stress like that of concrete. And drying shrinkage is very important factor to make huge tensile force in early age. In the results, although some differences were shown when comparing coal ash with mortar or concrete, the application as a building material turned out to be possible if further researches were carried out. And the shrinkage characteristic of hardened coal-ash reveals to be similar to that of moderate heat cement.

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.