Registering different kinds of clinical images widely used in diagnostic and surgery planning. However, cause of tumor growth or effected by gravity, human tissue has plenty of non-rigid deformation with clinically. Non-rigid registration allows the mapping of straight lines to curves. Therefore, such local deformation makes registration more complicated. In this work, we mainly introduce intra-subject, inter-modality registration. This paper mainly studies the nonlinear registration method of 2D medical image registration. The general medical image registration algorithm requires manual intervention, and cost long registration time. In our work to reduce the registration time in rough registration step, the barycenter and the direction of main axis of the image is calculated, which reduces the calculation amount compared with the method of using mutual information.
해부학적 구조의 변형이 존재하는 두 영상을 정합하기 위하여 연구되는 non-rigid 정합 방법은 환자간의 정합 환자와 표준영상간의 정합, 동일환자에서 변형을 갖는 부위의 정합 등 이용한 진단 및 연구에 사용되어 현재 많은 연구가 진행되고 있는 분야이다. 본 논문에서는 서로 형태와 색상 특성이 다른 Visible Human 컬러 영상파 CT 영상의 다리 부위를 정합하기 위하여 해부 영상에서 두드러진 차이를 보이는 뼈, 근육, 지방 조직을 분할하고 분할된 각 조직의 경계 단위를 계층적인 정합을 하는 조직 기반 성합 방법을 제안하였다. 제안한 조직 기반의 정합은 색상 특성이 두드러지게 변하는 경계 부위를 정확히 정합하므로 기존의 특징점을 이용한 정합 방법에 비하여 강력하고 정확한 결과를 얻음을 실험을 통하여 검증하였다. 또한 계층적인 정합은 분할된 조직의 바운딩 박스(bounding box) 정합. 전역 Rigid 정합과 지역 non-rigid 정합, 정합 보간(interpolation)을 순차적으로 실행하여 효율적인 계산 시간을 제공하였다.
본 논문에서는 시간차 흉부 CT 영상의 폐 실질 비강체 정합을 위하여 영역 이진화 모델링과 지역적 변형 모델을 이용한 정합 기법을 제안한다. 제안 기법은 먼저 폐 혈관과 실질을 분할하고, 영역 이진화 모델링을 수행하여 두 영상 사이의 밝기값의 차이에 따른 정합 오차를 최소화 한다. 다음으로 초기 정합 기법으로 두 폐 표면을 전역적으로 정렬하고, 지역적 변형 변환 모델을 제안하여 비강체 정합을 수행한다. 또한, 정합 후 감산된 시간에 따른 밝기값 차이가 미리 정의된 칼라 맵을 이용하여 가시화 된다. 실험 결과는 제안기법이 10명의 환자에 대하여 최대호흡과 최소호흡 CT 영상에서 폐 실질을 정확하게 정합하였음을 보여주었다. 제안된 비강체 정합 기법은 폐 실질에 대한 정량적 분석 결과의 직관적인 칼라 매핑을 통하여 다양한 폐 질환의 정량적 분석에 유용하게 사용될 수 있다.
비강체 정합은 임상적 필요성은 높으나 계산 복잡도가 높고, 정합의 정확성 및 강건성을 확보하기 어려운 분야이다. 본 논문은 비지도 학습 환경에서 3차원 뇌 자기공명 영상 데이터에 딥러닝 네트워크를 이용한 비강체 정합 기법을 제안한다. 서로 다른 환자의 두 영상을 입력받아 네트워크를 통하여 두 영상 간의 특징 벡터를 생성하고, 변위 벡터장을 만들어 기준 영상에 맞추어 다른 쪽 영상을 변형시킨다. 네트워크는 U-Net 형태를 기반으로 설계하여 정합 시 두 영상의 전역적, 지역적인 차이를 모두 고려한 특징 벡터를 만들 수 있고, 손실함수에 균일화 항을 추가하여 3차원 선형보간법 적용 후에 실제 뇌의 움직임과 유사한 변형 결과를 얻을 수 있다. 본 방법은 비지도 학습을 통해 임의의 두 영상만을 입력으로 받아 단일 패스 변형으로 비강체 정합을 수행한다. 이는 반복적인 최적화 과정을 거치는 비학습 기반의 정합 방법들보다 빠르게 수행할 수 있다. 실험은 50명의 뇌를 촬영한 3차원 자기공명 영상을 가지고 수행하였고, 정합 전·후의 Dice Similarity Coefficient 측정 결과 평균 0.690으로 정합 전과 비교하여 약 16% 정도의 유사도 향상을 확인하였다. 또한, 비학습 기반 방법과 비교하여 유사한 성능을 보여주면서 약 10,000배 정도의 속도 향상을 보여주었다. 제안 기법은 다양한 종류의 의료 영상 데이터의 비강체 정합에 활용이 가능하다.
비강체 (non-rigid) 영상 등록에서 추정되는 좌표변환은 가역이어야 함으로 그 변환의 Jacobian 행렬식은 항상 양수 값을 가져야 한다. 본 논문에서는 이러한 가역 조건을 만족하는 좌표변환의 조건을 gradient 크기 제한의 조건으로 구한다. 또한 cubic B-spline을 이용한 변환 모델의 경우, 이 gradient 크기 제한 조건을 만족시키는 인수 집합을 이웃한 두 계수들의 차이가 제한된 인수들의 집합으로 구하였다. 이러한 인수들의 집합은 half space들의 교집합으로 이루어진 convex 집합이다. 본 논문에서는 이 convex 집합에 속하는 인수로 구성되는 좌표변환들 중에서 유사지수 (similarity measure) 를 최대로 만드는 변환을 gradient projection 최적화 기법을 통해 발견하였다. 이론적 분석, 폐 CT (Computed Tomography) 영상을 이용한 시뮬레이션 및 실험을 통하여, 제안된 알고리즘의 성능이 벌칙 함수 penalty function) 를 이용하는 기존의 방법보다 우수함을 증명하였다.
최근 사용 가능한 고해상도 위성 SAR 영상이 다양해지면서, 변화 탐지를 포함한 다양한 분야에서 SAR 영상에 대한 정밀 정합 요구가 높아지고 있다. 다중 관측각 환경에서의 고해상도 SAR 영상간 정합은 SAR 영상의 특성상 발생하는 스펙클 노이즈, 기하 왜곡 등에 의해 어려움이 있다. 본 연구에서는 독일 TerraSAR-X의 staring spotlight 모드로 촬영된 고해상도 SAR 영상을 활용하여, 개략정합 단계와 정밀정합 단계의 2단계에 걸친 영상정합 알고리즘을 제안하였다. 개략정합 단계에서는 적응형 샘플링 기법과 SAR-SIFT(Scale Invariant Feature Transform)를 결합하여 정합을 수행하였고, 정밀정합 단계에서는 3가지의 강성 정합 기법인 NCC(Normalized Cross Correlation), PC (Phase Congruency)-NCC, MI (Mutual Information) 기법과 비강성 정합 기법인 Gefolki (Geoscience extended Flow Optical Flow Lucas-Kanade Iterative)를 적용하여 정합 성능을 비교 분석하였다. 정합 결과는 RMSE (Root Mean Square Error)와 FSIM (Feature Similarity) 지수를 사용하여 정량적인 비교를 수행하였다. 사용한 모든 영상 조합에서 강성정합 기법은 Gefolki 알고리즘에 비해 저조한 정합 성능을 보였다. 강성정합 모델들은 지형기복이 큰 지역에서 정합오차가 크게 발생함을 확인할 수 있었다. Gefolki 알고리즘 적용 결과, RMSE 1~3화소를 보이며 가장 우수한 결과를 확인하였으며, FSIM 지수 또한 다른 기법에 비해 0.02~0.03 이상 높은 값을 취득했다. 다중 관측각 영상에서의 고해상도 SAR 영상 간 정합 성능을 비교하였으며, 강성정합 기법에 비해 Gefolki 알고리즘을 통해 지형효과를 충분히 줄일 수 있음을 확인했다. 이는 추후 변화탐지를 포함한 다양한 분야의 전 처리 과정에 효과적으로 사용될 수 있을 것으로 기대된다.
In this paper, the method to register multiple sets of skull CT images to absolute coordinate system is proposed. Contrary to correspondence paired mapping of previous techniques, four anatomical landmark points, three coplanar points and one non-coplanar point, compose three principal axes simple and unique for efficient registration by means of rigid body transformation. Throughout the numerical simulation with added random noises, the error performances in terms of different rotation and rounding-off of landmark points, and incorrect localization of anatomical landmark and target points are quantitatively analyzed to generalize the proposed technique. Experiments using real skull CT images demonstrate the feasibility for an efficient use in clinical practice.
해부학적 구조의 변형이 존재하는 신체 부위를 정합하기 위하여 연구되는 non-rigid 정합 방법은 현재 의료 영상 분야에서 매우 중요한 주제이고 많은 연구가 이루어지고 있다. 본 논문에서는 Visible Human Color 단면 영상과 CT영상 사이에 존재하는 다리 모양의 변형을 정합 하기 위하여 계층적인 non-rigid 정합 방법을 제안하였다. 제안한 계층적 정합 방법은 영역 경계를 이용한 global rigid 정합으로 초기 변형 벡터를 찾고. 정합 할 영역을 sampling하여 local non-rigid 정합을 수행 한 후 결과를 interpolation하여 전체 영역에 대한 최종 정합 벡터를 계산하였다. 결과적으로 더욱 효율적이고 강력한 non-rigid 정합 결과를 얻을 수 있었다.
Due to the development of medical imaging technology, different imaging technologies provide a large amount of effective information. However, different imaging method caused the limitations of information integrity by using single type of image. Combining different image together so that doctor can obtain the information from medical image comprehensively. Image registration algorithm based on mutual information has become one of the hotspots in the field of image registration with its high registration accuracy and wide applicability. Because the information theory-based registration technology is not dependent on the gray value difference of the image, and it is very suitable for multimodal medical image registration. However, the method based on mutual information has a robustness problem. The essential reason is that the mutual information itself is not have enough information between the pixel pairs, so that the mutual information is unstable during the registration process. A large number of local extreme values are generated, which finally cause mismatch. In order to overcome the shortages of mutual information registration method, this paper proposes a registration method combined with image spatial structure information and mutual information.
본 논문에서는 동적 자기 공명 영상에서 자동 전립선 분할 기법을 제안한다. 제안 기법은 평균 밝기값 분석을 통하여 동적 MR 영상들 중에서 전립선 영역이 조영증강이 잘 된 영상을 찾는다. 다음으로 조영전 MR 영상과 조영증강된 MR 영상을 B-스플라인 비강체 정합 기법으로 매칭 후 감산하여 전립선 후보 영역을 검출한다. 마지막으로 외부 방향으로 확장 연산을 수행한 후 내부 방향으로 연속적인 형태 전파를 수행하여 전립선 경계를 검출한다. 10명의 환자 데이터에 대하여 제안 기법으로 분할한 결과와 수작업으로 분할한 결과를 비교하여 정확성을 검증하였다. 평균 볼륨 오버랩 오차는 6.8%였고, 평균 절대값 볼륨 측정 오차는 2.5%였다. 제안 기법은 정확한 전립선 분할을 필요로 하는 컴퓨터 보조 전립선 진단 기법에 사용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.