• Title/Summary/Keyword: non-rigid objects

Search Result 29, Processing Time 0.026 seconds

Non-Prior Training Active Feature Model-Based Object Tracking for Real-Time Surveillance Systems (실시간 감시 시스템을 위한 사전 무학습 능동 특징점 모델 기반 객체 추적)

  • 김상진;신정호;이성원;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.23-34
    • /
    • 2004
  • In this paper we propose a feature point tracking algorithm using optical flow under non-prior taming active feature model (NPT-AFM). The proposed algorithm mainly focuses on analysis non-rigid objects[1], and provides real-time, robust tracking by NPT-AFM. NPT-AFM algorithm can be divided into two steps: (i) localization of an object-of-interest and (ii) prediction and correction of the object position by utilizing the inter-frame information. The localization step was realized by using a modified Shi-Tomasi's feature tracking algoriam[2] after motion-based segmentation. In the prediction-correction step, given feature points are continuously tracked by using optical flow method[3] and if a feature point cannot be properly tracked, temporal and spatial prediction schemes can be employed for that point until it becomes uncovered again. Feature points inside an object are estimated instead of its shape boundary, and are updated an element of the training set for AFH Experimental results, show that the proposed NPT-AFM-based algerian can robustly track non-rigid objects in real-time.

A Robust Algorithm for Tracking Non-rigid Objects Using Deformed Template and Level-Set Theory (템플릿 변형과 Level-Set이론을 이용한 비강성 객체 추적 알고리즘)

  • 김종렬;나현태;문영식
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.3
    • /
    • pp.127-136
    • /
    • 2003
  • In this paper, we propose a robust object tracking algorithm based on model and edge, using deformed template and Level-Set theory. The proposed algorithm can track objects in case of background variation, object flexibility and occlusions. First we design a new potential difference energy function(PDEF) composed of two terms including inter-region distance and edge values. This function is utilized to estimate and refine the object shape. The first step is to approximately estimate the shape and location of template object based on the assumption that the object changes its shape according to the affine transform. The second step is a refinement of the object shape to fit into the real object accurately, by using the potential energy map and the modified Level-Set speed function. The experimental results show that the proposed algorithm can track non-rigid objects under various environments, such as largely flexible objects, objects with large variation in the backgrounds, and occluded objects.

Hierarchical Active Shape Model-based Motion Estimation for Real-time Tracking of Non-rigid Object (계층적 능동형태 모델을 이용한 비정형 객체의 움직임 예측형 실시간 추적)

  • 강진영;이성원;신정호;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.1-11
    • /
    • 2004
  • In this paper we proposed a hierarchical ASM for real-time tracking of non-rigid objects. For tracking an object we used ASM for estimating object contour possibly with occlusion. Moreover, to reduce the processing time we used hierarchical approach for real-time tacking. In the next frame we estimated the initial feature point by using Kalman filter. We also added block matching algorithm for increasing accuracy of the estimation. The proposed hierarchical, prediction-based approach was proven to out perform the exiting non-hierarchical, non-prediction methods.

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.

Adaptive Color Snake Model for Real-Time Object Tracking

  • Seo, Kap-Ho;Jang, Byung-Gi;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.740-745
    • /
    • 2003
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks suck as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. Snake is designed no the basis of snake energies. Segmenting and tracking can be executed successfully by energy minimization. In this research, two new paradigms for segmentation and tracking are suggested. First, because the conventional method uses only intensity information, it is difficult to separate an object from its complex background. Therefore, a new energy and design schemes should be proposed for the better segmentation of objects. Second, conventional snake can be applied in situations where the change between images is small. If a fast moving object exists in successive images, conventional snake will not operate well because the moving object may have large differences in its position or shape, between successive images. Snakes's nodes may also fall into the local minima in their motion to the new positions of the target object in the succeeding image. For robust tracking, the condensation algorithm was adopted to control the parameters of the proposed snake model called "adaptive color snake model(SCSM)". The effectiveness of the ACSM is verified by appropriate simulations and experiments.

  • PDF

Real-Time Object Tracking and Segmentation Using Adaptive Color Snake Model

  • Seo Kap-Ho;Shin Jin-Ho;Kim Won;Lee Ju-Jang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.236-246
    • /
    • 2006
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks such as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. In this paper, the development of new snake model called 'adaptive color snake model (ACSM)' for segmentation and tracking is introduced. The simple operation makes the algorithm runs in real-time. For robust tracking, the condensation algorithm was adopted to control the parameters of ACSM. The effectiveness of the ACSM is verified by appropriate simulations and experiments.

Visual Tracking Using Snake Algorithm Based on Optical Flow Information

  • Kim, Won;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.13-16
    • /
    • 1999
  • An active contour model, Snake, was developed as a useful segmenting and tracking tool lot rigid or non-rigid (i.e. deformable) objects by Kass in 1987 In this research, Snake is newly designed to cover this large moving case. Image flow energy is proposed to give Snake the motion information of the target object. By this image flow energy Snake's nodes can move uniformly along the direction of the target motion in spite of the existences of local minima. Furthermore, when the motion is too large to apply image flow energy to tracking, a jump mode is proposed for solving the problem. The vector used to make Snake's nodes jump to the new location can be obtained by processing the image flow. The effectiveness of the proposed Snake is confirmed by some simulations.

  • PDF

Moving object segmentation and tracking using feature based motion flow (특징 기반 움직임 플로우를 이용한 이동 물체의 검출 및 추적)

  • 이규원;김학수;전준근;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1998-2009
    • /
    • 1998
  • An effective algorithm for tracking rigid or non-rigid moving object(s) which segments local moving parts from image sequence in the presence of backgraound motion by camera movenment, predicts the direction of it, and tracks the object is proposed. It requires no camera calibration and no knowledge of the installed position of camera. In order to segment the moving object, feature points configuring the shape of moving object are firstly selected, feature flow field composed of motion vectors of the feature points is computed, and moving object(s) is (are) segmented by clustering the feature flow field in the multi-dimensional feature space. Also, we propose IRMAS, an efficient algorithm that finds the convex hull in order to cinstruct the shape of moving object(s) from clustered feature points. And, for the purpose of robjst tracking the objects whose movement characteristics bring about the abrupt change of moving trajectory, an improved order adaptive lattice structured linear predictor is used.

  • PDF

A Study on Multiple Target Tracking Using Adaptive Neural Network and Mosaic Background Extraction (모자이크 배경이미지 추출과 적응적 신경망을 이용한 다중 보행자 추적 시스템에 관한 연구)

  • 서창진;양황규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1802-1808
    • /
    • 2003
  • In this paper, we propose a method about the extraction of the pedestrian tracking trajectory in the road and we used the method of mosaic background extraction and adaptive neural network for automatic pedestrian tracking system. We used mosaic background extraction to overcome ghost phenomenon. And we detected pedestrian using differential image analysis. We used adaptive neural network for multiple pedestrian tracking that non­rigid form moving. The ART2 network is capable of detecting the mass­centers of moving objects within one frame. The history of neurons positions in the sequential frames approximates the traces of the targets. The experiments done with the network in simulated environment show promising results.

Trace of Moving Object using Structured Kalman Filter (구조적 칼만 필터를 이용한 이동 물체의 추적)

  • Jang, Dae-Sik;Jang, Seok-Woo;Kim, Gye-young;Choi, Hyung-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.5
    • /
    • pp.319-325
    • /
    • 2002
  • Tracking moving objects is one of the most important techniques in motion analysis and understanding, and it has many difficult problems to solve. Especially, estimating and identifying moving objects, when the background and moving objects vary dynamically, are very difficult. It is possible under such a complex environment that targets may disappear totally or partially due to occlusion by other objects. The Kalman filter has been used to estimate motion information and use the information in predicting the appearance of targets in succeeding frames. In this paper, we propose another version of the Kalman filter, to be called structured Kalman filter, which can successfully work its role of estimating motion information under a deteriorating condition such as occlusion. Experimental results show that the suggested approach is very effective in estimating and tracking non-rigid moving objects reliably.