• Title/Summary/Keyword: non-quasi-static

Search Result 85, Processing Time 0.021 seconds

Nonlinear seismic analysis of a super 13-element reinforced concrete beam-column joint model

  • Adom-Asamoah, Mark;Banahene, Jack Osei
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.905-924
    • /
    • 2016
  • Several two-dimensional analytical beam column joint models with varying complexities have been proposed in quantifying joint flexibility during seismic vulnerability assessment of non-ductile reinforced concrete (RC) frames. Notable models are the single component rotational spring element and the super element joint model that can effectively capture the governing inelastic mechanisms under severe ground motions. Even though both models have been extensively calibrated and verified using quasi-static test of joint sub-assemblages, a comparative study of the inelastic seismic responses under nonlinear time history analysis (NTHA) of RC frames has not been thoroughly evaluated. This study employs three hypothetical case study RC frames subjected to increasing ground motion intensities to study their inherent variations. Results indicate that the super element joint model overestimates the transient drift ratio at the first story and becomes highly un-conservative by under-predicting the drift ratios at the roof level when compared to the single-component model and the conventional rigid joint assumption. In addition, between these story levels, a decline in the drift ratios is observed as the story level increased. However, from this limited study, there is no consistent evidence to suggest that care should be taken in selecting either a single or multi component joint model for seismic risk assessment of buildings when a global demand measure such as maximum inter-storey drift is employed in the seismic assessment framework.

Analysis of Practical Dynamic Force of Structure with Inverse Problem (역문제에 의한 구조물의 실동하중 해석)

  • 송준혁;노홍길;김홍건;유효선;강희용;양성모
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.75-80
    • /
    • 2004
  • Vehicle structures are composed of many substructure connected to one another by various types of mechanical joints. In vehicle engineering it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. It is difficult to obtain the accurate load history of specified positions because of the errors such as modeling, measurement and etc. In the beginning of design exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic force determination is developed by the combination of the principal stresses of F. E. Analysis and experiment. Least square pseudo inverse matrix is adopted to obtain in inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these non. Finally, to verify the proposed procedure, a bus is analyzed. This measurement and prediction technology can be extended to the structural modification of any geometric shape in complex structure.

Modelling inelastic hinges using CDM for nonlinear analysis of reinforced concrete frame structures

  • Rajasankar, J.;Iyer, Nagesh R.;Prasad, A. Meher
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.319-341
    • /
    • 2009
  • A new formulation based on lumped plasticity and inelastic hinges is presented in this paper for nonlinear analysis of Reinforced Concrete (RC) frame structures. Inelastic hinge behaviour is described using the principles of Continuum Damage Mechanics (CDM). Member formulation contains provisions to model stiffness degradation due to cracking of concrete and yielding of reinforcing steel. Depending on its nature, cracking is classified as concentrated or distributed. Concentrated cracking is accounted through a damage variable and its growth is defined based on strain energy principles. Presence of distributed flexural cracks in a member is taken care of by modelling it as non-prismatic. Plasticity theory supported by effective stress concept of CDM is applied to describe the post-yield response. Nonlinear quasi-static analysis is carried out on a RC column and a wide two-storey RC frame to verify the formulation. The column is subjected to constant axial load and monotonic lateral load while the frame is subjected to only lateral load. Computed results are compared with those due to experiments or other numerical methods to validate the performance of the formulation and also to highlight the contribution of distributed cracking on global response.

A Study on Similitude Law for Pseudodynamic Tests and Shaking Table Tests on Small-scale R/C Models (철근콘크리트 축소모형의 유사동적실험과 진동대 실험을 위한 상사법칙 연구)

  • Yang, Hui-Gwan;Seo, Ju-Won;Cho, Nam-So;Chang, Sung-Pil
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.545-552
    • /
    • 2006
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not also enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry similitude is not well consistent in their inelastic seismic behaviors. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable to use different materials for small-scale model. In our recent study, a modified similitude law was derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. And quasi-static and pseudo-dynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. In this study, tests on scaled model of different concrete compressive strength aye carried out. In shaking table tests, added mass can not be varied. Thus, constant added mass on expected maximum displacement was applied and the validity was verified in shaking table tests. And shaking table tests on non-artificial mass model is carried out to settle a limitation of acceleration and the validity was verified in shanking table tests.

  • PDF

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

Analysis on the Flexural Behavior of Existing Reinforced Concrete Beam-Column Structures Infilled with U-Type Precast Wall Panel (U형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 보-기둥 구조물의 휨 거동 분석)

  • Son, Guk-Won;Yu, Sung-Young;Lim, Cheol-Woo;Ju, Ho-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.56-66
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Seismic resistant test of anchored and welded steel plate connections manifested an average of 2.8 times increase in the maximum loading (average 591.8 kN) in comparison to unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.4% and 2.7%. An analytical study was performed while assuming the RC column on the right side and the vertical element of the reinforced PC panel to behave in completely composite manner and the RC column on the left side and PC panel to behave in completely non-composite manner when loading was exerted from upper right end of RC frame of specimen to its left side. It was found with the assumptions that the overall flexural behavior in principle agreed with the experimental result.

Development of Code-PPP Based on Multi-GNSS Using Compact SSR of QZSS-CLAS (QZSS-CLAS의 Compact SSR을 이용한 다중 위성항법 기반의 Code-PPP 개발)

  • Lee, Hae Chang;Park, Kwan Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.521-531
    • /
    • 2020
  • QZSS (Quasi-Zenith Satellite System) provides the CLAS (Centimeter Level Augmentation Service) through the satellite's L6 band. CLAS provides correction messages called C-SSR (Compact - State Space Representation) for GPS (Global Positioning System), Galileo and QZSS. In this study, CLAS messages were received by using the AsteRx4 of Septentrio which is a GPS receiver capable of receiving L6 bands, and the messages were decoded to acquire C-SSR. In addition, Multi-GNSS (Global Navigation Satellite System) Code-PPP (Precise Point Positioning) was developed to compensate for GNSS errors by using C-SSR to pseudo-range measurements of GPS, Galileo and QZSS. And non-linear least squares estimation was used to estimate the three-dimensional position of the receiver and the receiver time errors of the GNSS constellations. To evaluate the accuracy of the algorithms developed, static positioning was performed on TSK2 (Tsukuba), one of the IGS (International GNSS Service) sites, and kinematic positioning was performed while driving around the Ina River in Kawanishi. As a result, for the static positioning, the mean RMSE (Root Mean Square Error) for all data sets was 0.35 m in the horizontal direction ad 0.57 m in the vertical direction. And for the kinematic positioning, the accuracy was approximately 0.82 m in horizontal direction and 3.56 m in vertical direction compared o the RTK-FIX values of VRS.

Enhancement of Impact Resistance of Layered Steel Fiber Reinforced High Strength Concrete Beam (층 구조를 갖는 강섬유 보강 고강도 콘크리트 보의 충격저항성능 향상)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.369-379
    • /
    • 2012
  • The collapse of concrete structures by extreme loads such as impact, explosion, and blast from terrorist attacks causes severe property damage and human casualties. Concrete has excellent impact resistance to such extreme loads in comparison with other construction materials. Nevertheless, existing concrete structures designed without consideration of the impact or blast load with high strain rate are endangered by those unexpected extreme loads. In this study, to improve the impact resistance, the static and impact behaviors of concrete beams caste with steel fiber reinforced concrete (SFRC) with 0~1.5% (by volume) of 30 mm long hooked steel fibers were assessed. Test results indicated that the static and impact resistances, flexural strength, ductility, etc., were significantly increased when higher steel fiber volume fraction was applied. In the case of the layered concrete (LC) beams including greater steel fiber volume fraction in the tensile zone, the higher static and impact resistances were achieved than those of the normal steel fiber reinforced concrete beam with an equivalent steel fiber volume fraction. The impact test results were also compared with the analysis results obtained from the single degree of freedom (SDOF) system anaysis considering non-linear material behaviors of steel fiber reinforced concrete. The analysis results from SDOF system showed good agreement with the experimental maximum deflections.

Experimentally validated FEA models of HF2V damage free steel connections for use in full structural analyses

  • Desombre, Jonathan;Rodgers, Geoffrey W.;MacRae, Gregory A.;Rabczuk, Timon;Dhakal, Rajesh P.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.385-399
    • /
    • 2011
  • The aim of this research is to model the behaviour of recently developed high force to volume (HF2V) passive energy dissipation devices using a simple finite element (FE) model. Thus, the end result will be suitable for use in a standard FE code to enable computationally fast and efficient analysis and design. Two models are developed. First, a detailed axial model that models an experimental setup is created to validate the approach versus experimental results. Second, a computationally and geometrically simpler equivalent rotational hinge element model is presented. Both models are created in ABAQUS, a standard nonlinear FE code. The elastic, plastic and damping properties of the elements used to model the HF2V devices are based on results from a series of quasi-static force-displacement loops and velocity based tests of these HF2V devices. Comparison of the FE model results with the experimental results from a half scale steel beam-column sub-assembly are within 10% error. The rotational model matches the output of the more complex and computationally expensive axial element model. The simpler model will allow computationally efficient non-linear analysis of large structures with many degrees of freedom, while the more complex and physically accurate axial model will allow detailed analysis of joint connection architecture. Their high correlation to experimental results helps better guarantee the fidelity of the results of such investigations.

Design of Tight Coupled 1/4 Wavelength Backward-Wave Directional Coupler using Coupled Lines with Finite Metallization Thickness (도체 두께를 가진 결합선로를 이용하여 강한 결합특성을 갖는 1/4파장 역방향 방향성 결합기의 설계)

  • 홍익표;윤남일;육종관
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1004-1010
    • /
    • 2003
  • In this paper, the 1/4 wavelength backward-wave directional coupler using coupled lines with finite metallization thickness is described. A mode-matching method, simple and fast approach to the quasi-static analysis, has been used to analyse this structure. The numerical results show that it is possible to overcome the disadvantages of weakly coupling, low directivity, and narrow strip distance non-realizable in the case of 1/4 wavelength backward-wave directional coupler with zero thickness conductor. It is also revealed that thicker metallization causes longer coupler length in the case of backward-wave symmetrical parallel coupled line directional coupler. The finite metallization thickness can be a new parameter for tight coupling in the design of backward-wave directional couplers, which enables us to design more accurate properties of monolithic microwave integrated circuits.