• Title/Summary/Keyword: non-proliferation

Search Result 731, Processing Time 0.027 seconds

EXPERIMENTAL AND EPIDEMIOLOGICAL EVIDENCE FOR NON-ORGAN SPECIFIC CANCER PREVENTIVE EFFECT OF KOREAN GINSENG AND IDENTIFICATION OF ACTIVE COMPOUNDS

  • Yun, Taik-Koo
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.17-18
    • /
    • 2001
  • Panax ginseng C. A. Meyer has been the most highly recognized medicinal herb in the Orient. The prolonged administration of red ginseng extract significantly inhibited the incidence of hepatoma and also proliferation of pulmonary tumors induced by aflatoxin B$_1$and urethane. Statistically significant anticarcinogenic effects were observed in powders and extract of 6 year-dried fresh ginseng, 5 and 6 year-white ginseng and 4, 5 and 6 year-red ginseng by 9 week medium-term anticarcinogenicity test using benzo[a]pyrene (Yun's model).(omitted)

  • PDF

Wound Healing Effect of 525 nm Green LED Irradiation on Skin Wounds of Male Sprague Dawley Rats

  • Cheon, Min-Woo;Park, Yong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.226-229
    • /
    • 2010
  • Many methods exist that promote wound healing, including light therapy, which consists of light beams that assist the human body in treating and sterilizing wounds, as well as regenerating cells. Irradiation with specific wavelengths of either laser or LED light has been shown to induce beneficial proliferation of fibroblasts that, depending on the size of the wound, can be effective in promoting wound healing. The experiments in this study utilized 8 week old 250~300 g Male Sprague Dawley Rats (ILAR Code: NTacSam:SD) and included a non-irradiation group and a 525 nm green LED irradiation group (n of each group = 7). In experiments animals were allowed to rest for 24 hours after wounds had been excised, which was followed by non- irradiation or 525 nm green LED irradiation therapy one hour per day for 9 days. Immunohistochemical staining was conducted for cytokeratin in order to precisely measure the defect size. In addition, Masson's trichrome staining was utilized in order to compare levels of collagen between the 525 nm green LED irradiation group and the non-irradiation group. Animals exposed to 525 nm green LED irradiation (p<0.05) healed at a faster rate and had increased collagenosis compared with the non-irradiated control group. Thus, treatment with 525 nm green LED irradiation had a beneficial effect on wound healing and should be considered as a possible alternative to low power laser treatment.

Reconsideration of Significant Quantity (SQ) for Pu Based on the Strategic Impact Investigation of Non-Strategic Nuclear Weapon (NSNW) Using Monte-Carlo Simulations

  • Woo, Seung Min;Lee, Manseok;Ryu, Je Ir
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.421-433
    • /
    • 2021
  • The present multidisciplinary study, which is a nexus of engineering and political science, investigates how the modernization of Non-Strategic Nuclear Weapons (NSNWs) affects the IAEA safeguards system based on the likelihood of the use of nuclear weapons. To this end, this study examines the characteristics of modernized NSNWs using Monte Carlo techniques. The results thus obtained show that 10 kt NSNWs with a Circular Error Probability (CEP) of 10 m can destroy the target as effectively as a 500 kt weapon with a CEP of 100 m. The IAEA safeguards system shows that the Significant Quantity (SQ) of 1 of plutonium is 8 kg, a parameter that was established when strategic nuclear weapons were dominant. However, the results of this study indicate that in recent years, low-yield nuclear weapons such as NSNWs have been more strategically interesting than strategic nuclear weapons as NSNWs require less plutonium than strategic nuclear weapons. Therefore, we would like to conclude that reducing the SQ of plutonium can result in more robust safeguards and non-proliferation strategies.

The Effects of Forsythiae Frucus on Inflammatory Genes and Cyto-pathological Alterations in Chronic Non-Bacterial Prostatitis Rat Model (연교(連翹)가 만성 비세균성 전립선영 Rat의 염증발현인자 및 세포조직 변화에 미치는 영향)

  • Lee, Jin-Sin;Ahn, Young-Min;Ahn, Se-Young;Doo, Ho-Kyung;Lee, Byung-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.639-652
    • /
    • 2006
  • Objective : The etiology of chronic prostatitis is likely multifactorial, resulting from either a cascade of events after an initiating factor or from a variety of etiologic mechanisms. There is substantiating evidence to support the role of the inflammatory responses in its pathogenesis, and the clinical value in the evaluation of therapeutic efficacy. Forsythiae Frucus has been traditionally used in treatment of inflammatory diseases, including of prostatitis and urinary tract inflammation. In this study, we investigated the effects of Forsythiae Frucus on inflammatory cytokines and cyto-pathological alternation in the rat model of chronic non-bacterial prostatitis induced by castration and $17{\beta}$-estradiol treatment. Methods : Two-month-old rats were treated with $17{\beta}$-estradiol after castration for induction of experimental non-bacterial prostatitis. which is similar to human chronic prostatitis in histopathological profiles. Forsythiae Frucus as an experimental specimen, and testosterone as a positive control, were administered orally. The prostates were evaluated by histopathologlcal parameters including the epithelial score and epithelio-stromal ratio for glandular damage. and the expression of inflammatory cytokine genes including interleukin (IL)-$1{\beta}$, IL-5, IL-12, tumor necrosis factor (TNF)-$\alpha$. eotaxin, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2(cox-2). Results : While prostates of control rats revealed severe acinar gland atrophy and stromal proliferation. the rats treated with Forsythiae Frucus showed a diminished range of tissue damage. Epithelial score was improved in the Forsythiae Frucus group over that of the control (P<0.05). The epithelia-stromal ratio was lower in the Forsythiae Frucus group when compared to that of the control (P<0.05). In the reverse transcription-polymerase chain reaction (RT-PCR) of inflammatory cytosine genes. Forsythiae Frucus inhibited the expression of IL-$1{\beta}$, TNF-$\alpha$, iNOS, cox-2 genes, while it modulated the expression of IL-5, which is an anti-inflammatory cytokine. Conclusions : These findings suggest that Forsythiae Frucus may protect the glandular epithelial cells and also inhibit stromal proliferation in association with the immune modulation including the suppression of inflammatory cytokines and increase of anti-inflammatory cytokines. From theses results. we suggest that Forsythiae Frucus could be a useful remedy agents for treating chronic non-bacterial prostatitis.

  • PDF

Applications of Non-Thermal Atmospheric Pressure Plasma in Dentistry (상온 대기압 플라즈마의 치의학적 응용)

  • Uhm, Soo-Hyuk;Kwon, Jae-Sung;Lee, Eun-Jung;Lee, Jung-Hwan;Kim, Kyoung-Nam
    • The Journal of the Korean dental association
    • /
    • v.52 no.12
    • /
    • pp.783-794
    • /
    • 2014
  • Since the introduction of non-thermal atmospheric pressure plasma in the field of the dentistry, numerous applications have been investigated. Especially with its advantages over existing vacuum plasma in terms of portability, low cost, and non-thermal damage, it can be directly applied in the oral cavity, giving number of potentials for dental application. First, possible application of non-thermal atmospheric pressure plasma in the field of dentistry is relation to dental caries and periodontal diseases. Teeth and alveolar bones are one of the strongest bony structures in our body, but it cannot be regenerated when they are damaged by dental caries or periodontal disease. Hence many studies to prevent such diseases have been carried out, though no perfect solution has been found yet. With recent studies of modifying surfaces through non-thermal atmospheric pressure application that can prevent attachment of bacteria, or studies on bactericidal effects of non-thermal atmospheric pressure plasma can be applied here to prevent oral pathogen and 'biofilm' attachment to the surface of teeth or directly eliminate the dental caries/periodontal disease causing germs. Secondly, non-thermal atmospheric pressure application will be useful on the surface of dental implant. It is well known that the success of dental implant surgery depends on the process known as 'osseointegration' that result from osteoblast attachment, proliferation and differentiation. As the application of non-thermal atmospheric pressure plasma on the surface of dental implant just before its introduction by the chair-side of dental surgery. Despite its long history, the generation of non-thermal atmospheric pressure plasma has been greatly increased with its application in dentistry.

Improvement of proliferation efficiency of strawberry 'Maehyang' treated by coconut water in tissue culture ('매향' 딸기의 조직배양 시 coconut water 처리에 따른 기내 증식효율 향상)

  • Kim, Hye Jin;Choi, Mi Ja;Lee, Jong Nam;Suh, Jong Taek;Kim, Ki Deog;Kim, Yul Ho;Hong, Su Young;Kim, Su Jeong;Sohn, Hwang Bae
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.242-247
    • /
    • 2020
  • This experiment was performed to determine the concentration of coconut water that is most effective in promoting the growth of 'Maehyang' strawberry in tissue culture. Cultivars in this experiment consisted of 'Maehyang' grown in the presence of 0, 20, 40, 60, 80, 100 ml·L-1 of coconut water which was added to a medium mixed with BA 0.5 mg·L-1 and IBA 0.1 mg·L-1. Morphological variation tests and SSR detection with coconut water were conducted to determine variations in proliferation. The proliferation rate of 'Maehyang' strawberry improved with the coconut water treatment compared to non-treatment. In particular, the proliferation rate with 100 ml·L-1 coconut water treatment increased by about 4 times. When 'Maeyang' was treated with 100 ml·L-1 of coconut water, two morphological variants occurred without genetic variation. Therefore, the results suggest that 100 ml·L-1 of coconut water can be used to mass-produce "Maeyang" strawberry without causing genetic variations.

MicroRNA-576-3p Inhibits Proliferation in Bladder Cancer Cells by Targeting Cyclin D1

  • Liang, Zhen;Li, Shiqi;Xu, Xin;Xu, Xianglai;Wang, Xiao;Wu, Jian;Zhu, Yi;Hu, Zhenghui;Lin, Yiwei;Mao, Yeqing;Chen, Hong;Luo, Jindan;Liu, Ben;Zheng, Xiangyi;Xie, Liping
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.130-137
    • /
    • 2015
  • MicroRNAs (miRNAs) are small, endogenous RNAs that play important gene-regulatory roles by binding to the imperfectly complementary sequences at the 3'-UTR of mRNAs and directing their gene expression. Here, we first discovered that miR-576-3p was down-regulated in human bladder cancer cell lines compared with the non-malignant cell line. To better characterize the role of miR-576-3p in bladder cancer cells, we over-expressed or down-regulated miR-576-3p in bladder cancer cells by transfecting with chemically synthesized mimic or inhibitor. The overexpression of miR-576-3p remarkably inhibited cell proliferation via G1-phase arrest, and decreased both mRNA and protein levels of cyclin D1 which played a key role in G1/S phase transition. The knock-down of miR-576-3p significantly promoted the proliferation of bladder cancer cells by accelerating the progression of cell cycle and increased the expression of cyclin D1. Moreover, the dual-luciferase reporter assays indicated that miR-576-3p could directly target cyclin D1 through binding its 3'-UTR. All the results demonstrated that miR-576-3p might be a novel suppressor of bladder cancer cell proliferation through targeting cyclin D1.

EID3 Promotes Glioma Cell Proliferation and Survival by Inactivating AMPKα1

  • Xiang, Yaoxian;Zhu, Lei;He, Zijian;Xu, Lei;Mao, Yuhang;Jiang, Junjian;Xu, Jianguang
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.790-800
    • /
    • 2022
  • Objective : EID3 (EP300-interacting inhibitor of differentiation) was identified as a novel member of EID family and plays a pivotal role in colorectal cancer development. However, its role in glioma remained elusive. In current study, we identified EID3 as a novel oncogenic molecule in human glioma and is critical for glioma cell survival, proliferation and invasion. Methods : A total of five patients with glioma were recruited in present study and fresh glioma samples were removed from patients. Four weeks old male non-obese diabetic severe combined immune deficiency (NOD/SCID) mice were used as transplant recipient models. The subcutaneous tumor size was calculated and recorded every week with vernier caliper. EID3 and AMP-activated protein kinase α1 (AMPKα1) expression levels were confirmed by real-time polymerase chain reaction and Western blot assays. Colony formation assays were performed to evaluate cell proliferation. Methyl thiazolyl tetrazolium (MTT) assays were performed for cell viability assessment. Trypan blue staining approach was applied for cell death assessment. Cell Apoptosis DNA ELISA Detection Kit was used for apoptosis assessment. Results : EID3 was preferentially expressed in glioma tissues/cells, while undetectable in astrocytes, neuronal cells, or normal brain tissues. EID3 knocking down significantly hindered glioma cell proliferation and invasion, as well as induced reduction of cell viability, apoptosis and cell death. EID3 knocking down also greatly inhibited tumor growth in SCID mice. Knocking down of AMPKα1 could effectively rescue glioma cells from apoptosis and cell death caused by EID3 absence, indicating that AMPKα1 acted as a key downstream regulator of EID3 and mediated suppression effects caused by EID3 knocking down inhibition. These findings were confirmed in glioma cells generated patient-derived xenograft models. AMPKα1 protein levels were affected by MG132 treatment in glioma, which suggested EID3 might down regulate AMPKα1 through protein degradation. Conclusion : Collectively, our study demonstrated that EID3 promoted glioma cell proliferation and survival by inhibiting AMPKα1 expression. Targeting EID3 might represent a promising strategy for treating glioma.

Human Papillomavirus Type 16/18 Oncoproteins: Potential Therapeutic Targets in Non-smoking Associated Lung Cancer

  • Zhang, Er-Ying;Tang, Xu-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5363-5369
    • /
    • 2012
  • High-risk human papillomavirus (HPV) especially HPV-16 and HPV-18 types are speculated to be important risk factors in non-smoking associated lung cancer in Asia. Increasing evidence has demonstrated that HPV oncoproteins may contribute to lung tumorigenesis and cell transformation. Importantly, HPV 16/18 E6 and E7 oncoproteins can mediate expression of multiple target genes and proteins, such as p53/pRb, VEGF, HIF-$1{\alpha}$, cIAP-2, and hTERT, and contribute to cell proliferation, angiogenesis and cell immortalization through different signaling pathways in lung cancer. This article provides an overview of experiment data on HPV-associated lung cancer, describes the main targets on which HPV E6/E7 oncoproteins act, and further discusses the potential signaling pathways in which HPV E6/E7 oncoproteins are involved. In addition, we also raise questions regarding existing problems with the study of HPV-associated lung cancer.

Dietary Non-nutritive Factors in Targeting of Regulatory Molecules in Colorectal Cancer: An Update

  • Pandurangan, Ashok Kumar;Esa, Norhaizan Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5543-5552
    • /
    • 2013
  • Colorectal cancer (CRC), a complex multi-step process involving progressive disruption of homeostatic mechanisms controlling intestinal epithelial proliferation/inflammation, differentiation, and programmed cell death, is the third most common malignant neoplasm worldwide. A number of promising targets such as inducible nitric acid (iNOS), cyclooxygenase (COX)-2, NF-E2-related factor 2 (Nrf2), $Wnt/{\beta}$-catenin, Notch and apoptotic signaling have been identified by researchers as useful targets to prevent or therapeutically inhibit colon cancer development. In this review article, we aimed to explore the current targets available to eliminate colon cancer with an update of dietary and non-nutritional compounds that could be of potential use for interaction with regulatory molecules to prevent CRC.