• Title/Summary/Keyword: non-point pollutant

Search Result 316, Processing Time 0.034 seconds

The characteristics of discharged non-point pollutants on Hwa-sung lake inflow streams on precipitation (화성호 유입하천의 강우시 비점오염물질 유출특성)

  • Lee, Sang Eun;Choi, I Song;Lee, In Ho;Hong, Dae Byuk;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.651-661
    • /
    • 2011
  • The purpose of this study is to estimate the characteristics and pollutant loadings of non-point pollutants that flowed in the streams on precipitation for pollutant loading reduction of Hwa-sung lake inflow streams. Although it has been made an effort to improve the water quality of Hwa-sung basin through the strategies for the preservation of water quality, it is shown that the water quality is not greatly improved. Because it has been industrialized and urbanized near Hwa-sung basin so that it is difficult to reduce the water pollution due to the increase in pollutant loadings of point and non-point sources. In this study, it is investigated the outflow characteristics of non-point pollutants that discharged with storm runoff and estimated the effect of runoff on Hwa-sung basin. The final goal of this study is to utilize the basic information for proper management and strategies of non-point sources on Hwa-sung basin. At the result of inflow streams, Ja-an stream that has the greatest pollutant loadings on precipitation is strongly influenced on the water quantity of Hwa-sung basin. On the other hand, it is shown that Nam-yang stream is strongly influenced on the SS concentration of Hwasung basin among them. Also, all streams; Nam-yang, Ja-ahn, Ah-eun stream; has the degree of slope more than or near 1 in the correlation results so that they have strong pollutant loading impact and the concentration of SS is the highest among other pollutants. So, specific studies on initial rain phenomena are more necessary to manage the pollutants economically. Also, the proper control of SS concentration is required to manage the effluent pollutants effectively on precipitation. So, it is necessary to consider the strategies for non-point pollutants as well as point pollutants when the new management is imposed to reduce the pollutant load for improvement of Hwa-sung basin.

INTEGRATED WATER RESOURCES AND QUALITY MANAGEMENT SYSTEM USING GIS/RS TECHNOLOGIES

  • Shim, Kyu-Cheoul;Shim, Soon-Bo;Lee, Yo-Sang
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • There has been continuous efforts to manage water resources for the required water quality criterion at river channel in Korea. However, we could obtain the partial improvement only for the point sources such as, waste waters from urban and factory site through the water quality management. Therefore, it is strongly needed that the best management practice throughout the river basin fur water quality management including non-point sources pollutant loads. This problem should be resolved by recognizing the non-point sources pollutant loads from the upstream river basin to the outlet of the basin depends on the landuse and soil type characteristics of the river basin using the computer simulation by a distributed model based on the detailed investigation and application of Geographic Information System (GIS). The purpose of this study is consisted of the three major distributions, which are the investigation of spread non-point sources pollutants throughout the river basin, development of the base maps to represent and interpret the input and outputs of the distributed simulation model, and prediction of non-point sources pollutant loads at the outlet of a up-stream river basin using Agricultural Non-Point Sources Model (AGNPS). For the validation purpose, the Seom-Jin River basin was selected with two flood events in 1998. The results of this application showed that the use of combined a distributed model and an application of GIS was very effective fur the best water resources and quality management practice throughout the river basin

  • PDF

Analysis of Runoff Characteristics of Non-point Sources Pollutant and Application of BMP Using BASINS/WinHSPF Model (BASINS/WinHSPF 모형을 이용한 비점오염물질 유출특성 분석과 최적관리기법 적용)

  • Kim, Min Joo;Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.88-100
    • /
    • 2014
  • This study analyzed runoff characteristics of non-point sources pollutant and evaluated removal of pollution by BMP(Best Management Practice) using BASINS/WinHSPF model. Hourly meterological data including input data was provided from 2010 to 2011 year to run HSPF model in Miho stream watershed. As the results of calibration and validation of the model, the model could be successfully performed to simulate the flow and water quality parameters. The apprehensive area of non-point source pollution was chosen by non-point source pollution per area of a tributary to the Miho stream and applied constructed wetland in area chosen. Three scenarios were based on installation area of an constructed wetland and HSPF model would be applied to estimate the pollutant removals through the constructed wetland. The removal rates of pollutants through the constructed wetland were estimated with the runoff and water quality parameters by the comparisons of before and after the constructed wetland application.

Characteristics of Non-point Pollutant Discharge from Upper Watershed of Seomjin Dam during Rainy Season (섬진강댐 상류 유역의 강우시 비점오염물질 유출 특성)

  • Kwak, Dong-Heui;Yoo, Seung-Joon;Kim, Ji-Hoon;Lim, Ik-Hyun;Kwon, Ji-Young;Chung, Paul-Gene
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.39-48
    • /
    • 2008
  • This study was carried out to investigate the characteristics of the pollutant discharge from non-point source and to estimate the unit loads of the pollutant discharge from the upper watershed of Seomjin Dam during rainy season. The upper watershed of Seomjin Dam is located in the middle of Jeonbuk province is formed two tributaries mainly. A sub-branch stream of those tributaries is Imsil stream of which flow rate is about 13% of the main stream of Seomjin reservoir normally. On the basis of measurement result in this study, the water quality of Imsil stream was fluctuated highly and the quantity of measured pollutant discharge was higher than the value calculated with the proportion of flow rate during dry season. On the contrary, during rainy season the mean values of flow rate and water quality were higher than the quartile according to the statistical analysis. That means rainfall can influence strongly on the water quality of the upper watershed of Seomjin reservoir. Among the several criteria of water quality, SS discharge was most sensitive to the flow rate variation of stream, which was fluctuated in proportion of rainfall, basically. It was evaluated the event mean concentration (EMC) of non-point source pollutants depending on rainfall events as well. Though the pollutant discharge unit of Imsil stream was lower than the main stream of Seomjin reservoir, the EMC value of Imsil stream was higher than the main stream of Seomjin reservoir.

Development of Pollutant Loading Estimation System using GIS (GIS를 이용한 유역별 오염부하량 산정시스템의 개발)

  • Ham, Kwang-Jun;Kim, Joon-Hyun;Shim, Jae-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.3
    • /
    • pp.97-107
    • /
    • 2005
  • The purpose of this study is to develop a system, which estimates watershed pollutant loading rate through the combination of GIS and computational mode. Also, the applicability of this study was estimated by the application of the above system for Chuncheon City. The detailed results of these studies are as follows; The pollutant loading estimation system was developed for more convenient estimation of pollutant loading rate in watershed, and the system load was minimized by the separation of estimation module for point and non-point source. This system on the basis of GIS is very economical and efficient because it can be applied to other watershed with the watershed map. System modification is not needed. The pollutant loading estimation system for point source was developed to estimate the pollutant loading rate in watershed through the extraction of the proper data from all districts and yearly data and the execution of spatial analysis which is main function of GIS. From the verification result of spatial analysis, real watershed area and the administrative districtarea extracted by spatial analysis were $1,114,893,340.15m^2$ and $1,114,878,683.68m^2$, respectively. It shows that the spatial analysis results were very exact with only 0.001% error. The pollutant loading estimation system for non-point source was developed to calculate the pollutant loading rate through the overlaying of land-use and watershed map after the construction of new land-use map using the land register database with most exact land use classification. Application result for Chuncheon City shows that the proposed system results in one percent land use error while the statistical method results in five percent. More exact nonpoint source pollutant loading was estimated from this system.

Development of a Method for Estimating Non-Point Pollutant Delivery Load of Each Reference Flow with Combination of BASINS/HSPF (BASINS/HSPF와 연계한 유황별 비점유달부하량 산정방법 개발)

  • Lee, Yong-Woon;Song, Kwang-Duck;Lee, Jae-Choon;Yoon, Kwang-Sik;Rhew, Doug-Hee;Lee, Su-Woong;Lee, Shin-Hoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.175-184
    • /
    • 2010
  • The purpose of this study is to develop a method for estimating the non-point pollutant delivery load of each reference flow(flows of dry, low, normal, abundant and flood seasons) with combination of BASINS/HSPF. The effectiveness of this method is evaluated by applying it to the watershed of Dongbok stream. The flow, BOD and T-P reliability indices(RI) of the BASINS/HSPF for the watershed of Dongbok stream are 1.59, 1.41, 1.28, respectively, and thus the similarity between measured and estimated values is high. The non-point pollutant load delivery ratios of BOD and T-P for the flows of dry, low and normal seasons, which are estimated by such constructed BASINS/HSPF, are 0.36 and 1.09, 0.82 and 2.19, 6.02 and 16.90, respectively, as compared with daily average of non-point loads for a year. These results show that the non-point pollutant delivery load should be estimated and applied for each reference flow, and in this case the method for estimating the non-point pollutant delivery load of each reference flow can be useful.

Study on the Discharge Characteristics of Non-point Pollutant Source in the Urban Area of the Youngsan-River Basin (영산강 유역 도시지역의 비점오염원 배출특성에 관한 연구)

  • Jin, Young-Hoon;Park, Sung-Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.605-613
    • /
    • 2006
  • Discharge characteristics of non-point source pollutant and load amount of the discharge in the urban area were investigated in the Pungyeongjeong-stream basin and the Yongbong-stream basin in this present study. The land use of the studied basins were divided into paddy field, industrial complex area, combined sewage system, separate sewer system and point sources discharge. The descriptive statistics on the event mean concentrations (EMCs) of non-point pollutants by the the land use showed in the range of 4.43-32.28 mg/L for BOD and 8.27~56.17 mg/L for COD. The highest concentration was shown from the combined sewage system. The EMC of SS at the paddy field in the Pungyeongjeong-stream basin showed the highest range with the values ~ from 35.76 to 358.86 mg/L, which might have been influenced by a levee construction in the adjacent of the area. The relatively high concentration values of 4.43~32.28 mg/L and 1.617.13 mg/L emerged from TN and TP,respectively, at the discharge points of the both stream basins.

Assessment of Non-Point Source Pollutant Loads and Priority Management Areas using an HSPF Model in Sejong City, South Korea

  • Lim, Dohun;Lee, Yoonjin
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.881-891
    • /
    • 2017
  • In this study, the discharge loads of non-point pollution sources were analyzed using a Hydrologic Simulation Program-Fortran (HSPF) model for 46 sub-watersheds in order to guide the management plan for water and streams passing through the city. The results using HSPF showed good applicability in comparison to point measurements, which were based on BOD, TP, and TN. The mean value of the BOD loads was $4.08kg/km^2$ per day, and the highest level of BOD was $17.75kg/km^2$ per day at Namri. Three potential areas of high priority for the installment of constructed wetlands were selected in order to reduce non-point pollution sources based on BOD loads and on environmental and economic conditions. The results for these scenarios indicated a maximum rate of reduction in BOD of 39.12% within the proposed constructed wetlands.

Characteristics of Non-point Source Runoff in Housing and Industrial Area during Rainfall (강우시 주택 및 공단지역의 비점오염원 유출특성)

  • Kim, Kang Suk;Park, Jong Seok;Hong, Hyeon Seung;Rhee, Kyoung Hoon
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.581-589
    • /
    • 2012
  • Non-point source pollutant is exerting a serious influence on the water quality, since the characteristics of stormwater runoff is varied by the land usage pattern of an area and a basin, and all sorts of pollutants on the earth in rainfall flow into the urban stream. This study estimated EMC of each pollutant to investigate the characteristics of stormwater runoff by separating the urban area as the housing area and industrial area. As a result of the analysis, the first flush effect occurred in the non-point source pollutant of housing area and industrial area, as the runoff concentration gradually reduces after it rapidly increases in the initial rainfall, and in case of the non-point source pollutant the control of first stage rain-water. It is considered to require the continuous follow-up study such as the scale of long-term rainfall event and water quality data, land usage pattern by GIS method, database of topography and geological features, and so forth.

A Study on BASINS/WinHSPF for Evaluation of Non-point Source Reduction Efficiency in the Upstream of Nam-Han River Watershed (BASINS/WinHSPF를 이용한 남한강 상류 유역의 비점오염원 저감효율평가)

  • Yoon, Chun-Gyeong;Shin, Ah-Hyun;Jung, Kwang-Wook;Jang, Jae-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.951-960
    • /
    • 2007
  • Window interface to Hydrological Simulation Program-FORTRAN (WinHSPF) developed by the United States Environmental Protection Agency (EPA) was applied to the upstream of Nam-Han river watershed to examine its applicability for loading estimates in watershed scale and to evaluate non-point source control scenarios using BMPRAC in WinHSPF. The WinHSPF model was calibrated and verified for water flow using Ministry of Construction and Transportation (MOCT, 3 stations, 2003~2005) and water qualities using Ministry of Environment (MOE, 5 station, 2000~2006). Water flow and water quality simulation results were also satisfactory over the total simulation period. But outliers were occurred in the time series data of TN and TP at some regions and periods. Therefore, it required more profit calibration process for more various parameters. As a result, all the study was performed within the expectation considering the complexity of the watershed, pollutant sources and land uses intermixed in the watershed. The estimated pollutant load for annual average about $BOD_5$, T-N and T-P respectively. Nonpoint source loading had a great portion of total pollutant loading, about 86.5~95.2%. In WinHSPF, BMPRAC was applied to evaluate non-point source control scenarios (constructed wetland, wet detention ponds and infiltration basins). All the scenarios showed efficiency of non-point source removal. Overall, the HSPF model is adequate for simulating watersheds characteristics, and its application is recommended for watershed management and evaluation of best management practices.