• Title/Summary/Keyword: non-negative matrix factorization (NMF)

Search Result 87, Processing Time 0.02 seconds

Generic Summarization Using Generic Important of Semantic Features (의미특징의 포괄적 중요도를 이용한 포괄적 문서 요약)

  • Park, Sun;Lee, Jong-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.5
    • /
    • pp.502-508
    • /
    • 2008
  • With the increased use of the internet and the tremendous amount of data it transfers, it is more necessary to summarize documents. We propose a new method using the Non-negative Semantic Variable Matrix (NSVM) and the generic important of semantic features obtained by Non-negative Matrix Factorization (NMF) to extract the sentences for automatic generic summarization. The proposed method use non-negative constraints which is more similar to the human's cognition process. As a result, the proposed method selects more meaningful sentences for summarization than the unsupervised method used the Latent Semantic Analysis (LSA) or clustering methods. The experimental results show that the proposed method archives better performance than other methods.

  • PDF

A New Method for Robust and Secure Image Hash Improved FJLT

  • Xiu, Anna;Kim, Hyoung-Joong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.143-146
    • /
    • 2009
  • There are some image hash methods, in the paper four image hash methods have been compared: FJLT (Fast Johnson- Lindenstrauss Transform), SVD (Singular Value Decomposition), NMF (Non-Negative Matrix Factorization), FP (Feature Point). From the compared result, FJLT method can't be used in the online. the search time is very slow because of the KNN algorithm. So FJLT method has been improved in the paper.

  • PDF

A Study on the RFID Biometrics System Based on Hippocampal Learning Algorithm Using NMF and LDA Mixture Feature Extraction (NMF와 LDA 혼합 특징추출을 이용한 해마 학습기반 RFID 생체 인증 시스템에 관한 연구)

  • Oh Sun-Moon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.46-54
    • /
    • 2006
  • Recently, the important of a personal identification is increasing according to expansion using each on-line commercial transaction and personal ID-card. Although a personal ID-card embedded RFID(Radio Frequency Identification) tag is gradually increased, the way for a person's identification is deficiency. So we need automatic methods. Because RFID tag is vary small storage capacity of memory, it needs effective feature extraction method to store personal biometrics information. We need new recognition method to compare each feature. In this paper, we studied the face verification system using Hippocampal neuron modeling algorithm which can remodel the hippocampal neuron as a principle of a man's brain in engineering, then it can learn the feature vector of the face images very fast. and construct the optimized feature each image. The system is composed of two parts mainly. One is feature extraction using NMF(Non-negative Matrix Factorization) and LDA(Linear Discriminants Analysis) mixture algorithm and the other is hippocampal neuron modeling and recognition simulation experiments confirm the each recognition rate, that are face changes, pose changes and low-level quality image. The results of experiments, we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to the existing method.

Audio Source Separation Method based on Beamspace-domain Multichannel Non-negative Matrix Factorization, Part II: A Study on the Beamspace Transform Algorithms (빔공간-영역 다채널 비음수 행렬 분해 알고리즘을 이용한 음원 분리 기법 Part II: 빔공간-변환 기법에 대한 고찰)

  • Lee, Seok-Jin;Park, Sang-Ha;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.332-339
    • /
    • 2012
  • Beamspace transform algorithm transforms spatial-domain data - such as x, y, z dimension - into incidence-angle-domain data, which is called beamspace-domain data. The beamspace transform method is generally used in source localization and tracking, and adaptive beamforming problem. When the beamspace transform method is used in multichannel audio source separation, the inverse beamspace transform is also important because the source image have to be reconstructed. This paper studies the beamspace transform and inverse transform algorithms for multichannel audio source separation system, especially for the beamspace-domain multichannel NMF algorithm.

Generic Text Summarization Using Non-negative Matrix Factorization (비음수 행렬 인수분해를 이용한 일반적 문서 요약)

  • Park Sun;Lee Ju-Hong;Ahn Chan-Min;Park Tae-Su;Kim Ja-Woo;Kim Deok-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.469-472
    • /
    • 2006
  • 본 논문은 비음수 행렬 인수분해(NMF, non-negative matrix factorization)를 이용하여 문장을 추출하여 문서를 요약하는 새로운 방법을 제안하였다. 제안된 방법은 문장추출에 사용되는 의미 특징(semantic feature)이 비 음수 값을 갖기 때문에 잠재의미분석에 비해 문서의 내용을 정확하게 요약한다. 또한, 적은 계산비용을 통하여 쉽게 요약 문장을 추출할 수 있는 장점을 갖는다.

  • PDF

Speech extraction based on AuxIVA with weighted source variance and noise dependence for robust speech recognition (강인 음성 인식을 위한 가중화된 음원 분산 및 잡음 의존성을 활용한 보조함수 독립 벡터 분석 기반 음성 추출)

  • Shin, Ui-Hyeop;Park, Hyung-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.326-334
    • /
    • 2022
  • In this paper, we propose speech enhancement algorithm as a pre-processing for robust speech recognition in noisy environments. Auxiliary-function-based Independent Vector Analysis (AuxIVA) is performed with weighted covariance matrix using time-varying variances with scaling factor from target masks representing time-frequency contributions of target speech. The mask estimates can be obtained using Neural Network (NN) pre-trained for speech extraction or diffuseness using Coherence-to-Diffuse power Ratio (CDR) to find the direct sounds component of a target speech. In addition, outputs for omni-directional noise are closely chained by sharing the time-varying variances similarly to independent subspace analysis or IVA. The speech extraction method based on AuxIVA is also performed in Independent Low-Rank Matrix Analysis (ILRMA) framework by extending the Non-negative Matrix Factorization (NMF) for noise outputs to Non-negative Tensor Factorization (NTF) to maintain the inter-channel dependency in noise output channels. Experimental results on the CHiME-4 datasets demonstrate the effectiveness of the presented algorithms.

Automatic Generic Summarization Based on Non-negative Semantic Variable Matrix (비음수 의미 가변 행렬을 기반으로 한 자동 포괄적 문서 요약)

  • Park Sun;Lee Ju-Hong;Ahn Chan-Min;Park Tae-Su;Kim Deok-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.391-393
    • /
    • 2006
  • 인터넷의 급속한 확산과 대량 정보의 이동은 문서의 요약을 더욱 필요로 하고 있다. 본 논문은 비음수 행렬 인수분해로(NMF, non-negative matrix factorization) 얻어진 비음수 의미 가변 행렬(NSVM, non-negative semantic variable matrix)을 이용하여 자동으로 포괄적 문서요약 하는 새로운 방범을 제안하였다. 제안된 방법은 인간의 인식 과정과 유사한 비음수 제약을 사용한다. 이 결과 잠재의미색인에 비해 더욱 의미 있는 문장을 선택하여 문서를 요약할 수 있다. 또한, 비지도 학습에 의한 문서요약으로 사전 전문가에 의한 학습문장이 필요 없으며, 적은 계산비용을 통하여 쉽게 문장을 추출할 수 있는 장점을 갖는다.

  • PDF

Automatic Email Multi-category Classification Using Dynamic Category Hierarchy and Non-negative Matrix Factorization (비음수 행렬 분해와 동적 분류 체계를 사용한 자동 이메일 다원 분류)

  • Park, Sun;An, Dong-Un
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.5
    • /
    • pp.378-385
    • /
    • 2010
  • The explosive increase in the use of email has made to need email classification efficiently and accurately. Current work on the email classification method have mainly been focused on a binary classification that filters out spam-mails. This methods are based on Support Vector Machines, Bayesian classifiers, rule-based classifiers. Such supervised methods, in the sense that the user is required to manually describe the rules and keyword list that is used to recognize the relevant email. Other unsupervised method using clustering techniques for the multi-category classification is created a category labels from a set of incoming messages. In this paper, we propose a new automatic email multi-category classification method using NMF for automatic category label construction method and dynamic category hierarchy method for the reorganization of email messages in the category labels. The proposed method in this paper, a large number of emails are managed efficiently by classifying multi-category email automatically, email messages in their category are reorganized for enhancing accuracy whenever users want to classify all their email messages.

A NMF-Based Speech Enhancement Method Using a Prior Time Varying Information and Gain Function (시간 변화에 따른 사전 정보와 이득 함수를 적용한 NMF 기반 음성 향상 기법)

  • Kwon, Kisoo;Jin, Yu Gwang;Bae, Soo Hyun;Kim, Nam Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.6
    • /
    • pp.503-511
    • /
    • 2013
  • This paper presents a speech enhancement method using non-negative matrix factorization. In training phase, we can obtain each basis matrix from speech and specific noise database. After training phase, the noisy signal is separated from the speech and noise estimate using basis matrix in enhancement phase. In order to improve the performance, we model the change of encoding matrix from training phase to enhancement phase using independent Gaussian distribution models, and then use the constraint of the objective function almost same as that of the above Gaussian models. Also, we perform a smoothing operation to the encoding matrix by taking into account previous value. Last, we apply the Log-Spectral Amplitude type algorithm as gain function.

Speech Basis Matrix Using Noise Data and NMF-Based Speech Enhancement Scheme (잡음 데이터를 활용한 음성 기저 행렬과 NMF 기반 음성 향상 기법)

  • Kwon, Kisoo;Kim, Hyung Young;Kim, Nam Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.619-627
    • /
    • 2015
  • This paper presents a speech enhancement method using non-negative matrix factorization (NMF). In the training phase, each basis matrix of source signal is obtained from a proper database, and these basis matrices are utilized for the source separation. In this case, the performance of speech enhancement relies heavily on the basis matrix. The proposed method for which speech basis matrix is made a high reconstruction error for noise signal shows a better performance than the standard NMF which basis matrix is trained independently. For comparison, we propose another method, and evaluate one of previous method. In the experiment result, the performance is evaluated by perceptual evaluation speech quality and signal to distortion ratio, and the proposed method outperformed the other methods.