• Title/Summary/Keyword: non-metallic products

Search Result 23, Processing Time 0.027 seconds

Impact Analysis on the Regional Economy Affected by Environmental Regulations (환경규제가 지역경제에 미치는 파급효과 분석)

  • 김호언
    • Journal of the Korean Regional Science Association
    • /
    • v.15 no.3
    • /
    • pp.1-13
    • /
    • 1999
  • Since the 1990's, the most important environmental issue on the earth is characterized by "global worming problem". The United Nations Framework Convention on Climate Change (UNFCCC) plays an significant role to solve this problem on a worldwide scale. The main purpose of this paper is to analyse the impact of $CO_2$ reduction on the Daegu regional economy through 1995 regional input-output coefficients derived from the 1995 national input coefficients table by using non-survey method. The sectoral impacts on output, income, and employment were computed under the decline-unequalized assumption in final demand influenced by $CO_2$ reduction. This article has six main sections. Section 1 is an introduction to this paper. Section 2 explains briefly the derivation method of the regional technical coefficients. Section 3 describes the model building through input-output multipliers. In section 4 regional data on output, income, employment and final demand are computed to estimate the regional impacts. Section 5 deals with impact analysis on the Daegu economy. Section 6 contains a brief summary and concludintg remarks. The research findings of this study can be summarized as follows. In 1995, under the assumption of 10% decrease on an average in final demand sectors, the economy of the region studied decreased \3600 billion of output, ₩1114 billion of income, and 49919 man-years of employment. The percent ratios of each value to the total showed 9.4%, 9.7%, and 9.2%, respectively. The dominant sectors associated with impact analysis within the region are chemicals and chemical products, paper, printing and publishing, and textiles and leather, etc; nevertheless, the least dominant sector is non-metallic mineral products. products.

  • PDF

Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

  • Kim, Nam In;Kim, Young Sik;Kim, Kyung Soo;Chang, Hyun Young;Park, Heung Bae;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001~0.075% were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel.

A Study on Induced Effect Estimation of Aggregate and Stone Sector with Ritz-Spaulding Multipliers (공급승수를 이용한 골재산업의 유발효과 추정 연구)

  • Dongho Jeong;Ji Whan Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.129-141
    • /
    • 2024
  • This study derived production-production multipliers using a regional input-output table and estimated the induced effect of aggregates through the non-metallic minerals sector and the concrete products sector. In deriving the induced effect of aggregates, it is difficult to use the regional input-output table due to the sector classification problem. This study analyzed the non-metallic mineral sector, including aggregates, as aggregates sector, and the concrete products sector, which uses most of the aggregate production. By analyzing this, we attempted to alleviate difficulties caused by sector classification restrictions. In the process of estimating the induced effect, it was assumed that there was a decrease in aggregate production, and in the process of analyzing the concrete products sector, the effect of the decrease in concrete product production due to the decrease in aggregate production, that is, the decrease in production of one unit of aggregate was 0.8511 in the concrete product sector. The analysis was conducted on the premise of a decrease in unit production. Inducing effects within and between regions were calculated for the 17 metropolitan cities and provinces classified by the regional input-output table. The employment effect was also calculated, assuming a 10% production decrease to show differences according to the size of the aggregate and concrete product sectors in each region.

ELECTROCHEMICAL PROCESSING OF USED NUCLEAR FUEL

  • Goff, K.M.;Wass, J.C.;Marsden, K.C.;Teske, G.M.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.335-342
    • /
    • 2011
  • As part of the Department of Energy's Fuel Cycle Research and Development Program an electrochemical technology employing molten salts is being developed for recycle of metallic fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. This technology has been deployed for treatment of used fuel from the Experimental Breeder Reactor II (EBR-II) in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory. This process is based on dry (non-aqueous) technologies that have been developed and demonstrated since the 1960s. These technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including preparation of associated high-level waste forms.

The structure analysis of iron relics excavated at dwelling site of Yangsoo-ri (양수리 주거지출토 철제유물의 금속조직과 분석-BC1-AD1 세기 추정 철제유물을 중심으로)

  • Kim, Soo-Ki
    • 보존과학연구
    • /
    • s.27
    • /
    • pp.165-180
    • /
    • 2006
  • The research was conducted to understand type of iron used by those who lived at dwelling site of Yangsoo-ri in between the first century B.C. and the first century A.D. to make steel products and their technique such as steel making process and heat treatment, based on micro structure information obtained through microscopic metallographic structure analysis with SEM-EDS of six steel productsexhumed at the site. Key findings are summarized as below. In the sense that Si-Ca-Al style and less than 0.5% of Ti were found in the non-metallic inclusion, the material used for forged iron ware was magnetite resolved in that. It is, however, unclear whether magnetite was resolved at high temperature or at low temperature. Microscopic structure analysis revealed that forged steel products were made through repeated hot working, the technique of molding by hitting after heating in the process of resolving and molding iron. As a result, the iron used here for the products was not the iron ore which was produced through resolution from discarded cast iron axe, ingot iron. It is probable that to make those steel products, disposed-of cast iron was reused after being molded by decarburizing. Although a few of relics were analyzed for the research, they were of critical importance in defining the process of ironware production from the first century B.C. and the first century A.D. at the Yangsoo-ri region. Judging from the iron from A-19 dwellingsite, it is possible to conclude that the iron was manufactured from cast iron decarburized and yet more research has to be done into relics yetto be exhumed in order to ascertain the finding. All of these findings are believed to play a critical role in further studies to define the steel-manufacturing technique used on the central Korean peninsular in the ancient times.

  • PDF

Evaluation of Crystalline Silica Exposure Level by Industries in Korea (국내 업종별 결정형 유리규산 노출 평가)

  • Yeon, Dong-Eun;Choi, Sangjun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.398-422
    • /
    • 2017
  • Objectives: The major aim of this study is to construct the database of retrospective exposure assessment for crystalline silica through reviews of literatures in South Korea. Methods: Airborne concentrations of crystalline silica were collected using an academic information search engine, Research Information Service System(RISS), operated by the Korea Education & Research Information Service(KERIS). The key words used for the literature search were 'silica', 'crystalline silica', 'cristobalite', 'quartz' and 'tridymite'. A total number of 18 published documents with the information of crystalline silica level in air or bulk samples were selected and used to estimate retrospective exposures to crystalline silica. Weighted arithmetic mean(WAM) calculated across studies was summarized by industry type. Industries were classified according to Korea Standard Industrial Classification(KSIC) using information provided in the literature. Results: A total of 2,131 individual air sampling data measured from 1987 to 2012 were compiled. Compiled individual measurement data consisted of 827 respirable crystalline silica (RCS), 31 total crystalline silica(TCS), 24 crystalline silica(CS), 778 respirable dust(RD) and 471 total dust(TD). Most of RCS measurements(68.9%) were collected from 'cast of metals(KSIC 243)'. Comparing industry types, 'mining coal and lignite(KISC 051)' showed the highest WAM concentration of RCS, $0.14mg/m^3$, followed by $0.11mg/m^3$ of 'manufacture of other non-metallic mineral products(KSIC 239)', $0.108mg/m^3$ of 'manufacture of ceramic ware(KSIC 232)', $0.098mg/m^3$ of 'heavy construction(KSIC 412)' and $0.062mg/m^3$ of 'cast of metals(KSIC 243)'. In terms of crystalline silica contents in airborne dust, 'manufacture of other non-metallic mineral products(KSIC 239)' showed the highest value of 7.3%(wt/wt), followed by 6.8% of 'manufacture of ceramic ware(KSIC 232)', 5.8% of 'mining of iron ores(KSIC 061)', 4.9% of 'cast of metals(KSIC 243)' and 4.5% of 'heavy construction(KSIC 412)'. WAM concentrations of RCS had no consistent trends over time from 1994 ($0.26mg/m^3$) to 2012 ($0.12mg/m^3$). Conclusion: The data set related RCS exposure level by industries can be used to determine not only the possibility of retrospective exposure to RCS, but also to evaluate the level of quantitative retrospective exposure to RCS.

Correlation between rare earth elements in the chemical interactions of HT9 cladding

  • Lee, Eun Byul;Lee, Byoung Oon;Shim, Woo-Yong;Kim, Jun Hwan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.915-922
    • /
    • 2018
  • Metallic fuel has been considered for sodium-cooled fast reactors because it can maximize the uranium resources. It generates rare earth elements as fission products, where it is reported by aggravating the fuel-cladding chemical interaction at the operating temperature. Rare earth elements form a multicomponent alloy (Ce-Nd-Pr-La-Sm-etc.) during reactor operation, where it shows a higher reaction thickness than a single element. Experiments have been carried out by simplifying multicomponent alloys for mono or binary systems because complex alloys have difficulty in the analysis. In previous experiments, xCe-yNd was fabricated with two elements, Ce and Nd, which have a major effect on the fuel-cladding chemical interaction, and the thickness of the reaction layer reached maximum when the rare earth elements ratio was 1:1. The objective of this study is to evaluate the effect and relationship of rare earth elements on such synergistic behavior. Single and binary rare earth model alloys were prepared by selecting five rare earth elements (Ce, Nd, Pr, La, and Sm). In the single system, Nd and Pr behaviors were close to diffusion, and Ce showed a eutectic reaction. In the binary system, Ce and Sm further increased the reaction layer, and La showed a non-synergy effect.

Human Exposure and Health Effects of Inorganic and Elemental Mercury

  • Park, Jung-Duck;Zheng, Wei
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.344-352
    • /
    • 2012
  • Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

Competitiveness of Energy Intensive Manufacturing Industries on Greenhouse Gas Mitigation Policies: Using Price Setting Power Model (온실가스 저감정책에 대한 에너지 다소비 제조업의 경쟁력 분석: 가격설정력 모형을 이용하여)

  • Han, Minjeong;Kim, Youngduk
    • Environmental and Resource Economics Review
    • /
    • v.20 no.3
    • /
    • pp.489-529
    • /
    • 2011
  • When greenhouse gas mitigation policies are implemented, energy intensive manufacturing industries are influenced much due to an increase in cost. However, industries that have price setting power are damaged less by the policies. Therefore, this paper analyzes vulnerability of energy intensive manufacturing industries to the policies by measuring price setting power of the industries. We analyzed price setting power model through ECM, employing the import prices and wages as independent variables. The industries that their prices react to import prices are price takers, which their prices are determined by rival's ones. On the other hand, the industry that their prices react to wages that mean domestic cost are price setters, and they will be less vulnerable to the policies. In addition, fluctuation of energy prices would be reflected in import prices because it influences other countries than my one. Thus, we employed energy prices as control variable to measure the net effects of import prices. As empirical results, petroleum products, chemical products, non-metallic mineral products, textiles, and motor vehicles sector have price setting power, so the industries have competitiveness on greenhouse gas mitigation policies.

  • PDF

Evaluation of Toxicity Influenced by Ion Imbalance in Wastewater (폐수에서 이온불균형문제가 생태독성에 미치는 영향 평가)

  • Shin, Kisik;Kim, Jongmin;Lee, Soohyung;Lee, Jungseo;Lee, Taekjune
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2018
  • This paper aims to evaluate the results of toxicity testing with Daphnia magna and Vibrio fischeri on wastewater samples which might be influenced by ion imbalance. The effluents from factories were found to be more toxic with high salinity levels than those from public wastewater treatment plant (WTP) and sewage treatment plant (SWP). Clion composition was highest in the effluent, in terms of percentage, which was followed by $Na^+$, $SO_4^{2-}$ and $Ca^{2+}$. $K^+$ and $Mg^{2+}$ ion was relatively low. The sensitivity of D. magna test results was higher than V. fischeri. Among samples which were proved by V. fischeri testing to be nontoxic, the composition ratio of each ion whether toxic samples or nontoxic samples which were decided by D. magna toxicity testing, were compared. $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$ ion composition ratio showed high level in nontoxic samples whereas $SO_4^{2-}$ and $Cl^-$ ion composition ratio was high in toxic samples. Accordingly, $SO_4^{2-}$ and $Cl^-$ ion seemed to be considered the ions causing toxicity in effluent. Toxicity from some categories of industries (Mining of non-metallic minerals, Manufacture of basic organic petrochemicals, Manufacture of other basic organic chemicals, Manufacture of other chemical products etc.) seemed to be influenced by salinity. The Ion concentration in influent and effluent were similar. Concentration of $Na^+$, $Cl^-$, $K^+$, $Ca^{2+}$ ions were high in influent, however $Mg^{2+}$ and $SO_4^{2-}$ ions were high in effluent.