• Title/Summary/Keyword: non-magnetic material

Search Result 183, Processing Time 0.029 seconds

The Study on Eddy Current Characteristic for Surface Defect of Gas Turbine Rotor Material (가스터빈 로터 재질에 따른 표면결함 와전류 특성연구)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.63-67
    • /
    • 2010
  • This paper introduces the eddy current signal characteristic of magnetic and non-magnetic gas turbine rotor. In the past, Magnetic particle inspection method was used in magnetic material for qualitative defect evaluation and the ultrasonic test method was used for quantitative evaluation. Nowadays, eddy current method is used in magnetic gas turbine rotor inspection due to advanced sensor design technology. We are studying on the magnetic gas turbine rotor by using eddy current method. We prepared diverse depth specimens made by magnetic and non-magnetic materials. We select optimum frequency according to material standard penetration data and experiment results. We got the signal on magnetic and non-magnetic material about 0.2 mm, 05 mm, 1.0 mm, 1.5 mm 2.0 mm and 2.5 mm depth defects and compare the signal amplitude and signal trend according to defect depth and frequency. The results show that signal amplitudes of magnetic are bigger than non-magnetic material and the trends are similar on every defect depth and frequency. The detection and resolution capabilities of eddy current are more effective in magnetic material than in non-magnetic materials. So, the eddy current method is effective inspection method on magnetic gas turbine rotor. And it has the merits of time saving and simple procedure by elimination of the ultrasonic inspection in traditional inspection method.

Tool Geometry Optimization and Magnetic Abrasive Polishing for Non-ferrous Material (공구형상 최적화 및 비자성체의 자가연마 특성 연구)

  • Kim, Sang-Oh;You, Man-Hee;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.313-320
    • /
    • 2010
  • The magnetic abrasive polishing (MAP) process is used to achieve the nano-meter grade polishing results on flat or complicated surface. In previous study, polishing the stainless steel plate which is a non-magneto-material was tried. To polish non-magneto-materials using the MAP process was very difficult because the process was fundamentally possible by the help of a magnetic force. Therefore, it had lower efficiency than magneto-materials such as SM45C. In this study, optimization for tool geometry of the MAP was performed to improve the magnetic force between tool and workpiece. Moreover, a permanent magnet was installed below the non-magneto-material to improve the magnetic force. And then the design of experiments was carried out to evaluate the effect of the MAP parameters on the polishing results.

The Recovery of Non-ferrous Metals from Broken Light Bulbs using the Magnetic Liquid Based Separation

  • Chioran, Viorica;Ardelean, Ioan
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • The paper presents results of a study on the selective separation technology of ferrous and non-ferrous metals from broken light bulbs. The proposed method is to use magnetic fluids to obtain a magnetic fluid based- separation. [1] The study was conducted using three types of waste materials: regular light bulbs, auto light bulbs and neon tubes. In order to process the waste materials, a six stages technologic flow was developed: a) separation of light bulbs components; b) Physical and chemical analysis of raw materials; c) grain conditioning of the raw material; d) dry magnetic separation of ferrous components; e) magnetic fluid separation of non-magnetic material; f) recovery of the magnetic fluid adhered to the surface of the separated material grains. [2] This study shows that magnetic fluid separation is only profitable for regular and auto light bulbs and is not profitable in the case of neon tubes.

A Study on Monitoring of the MAP for Non-magnetic Material by AE Signal Analysis (AE신호 분석을 통한 비자성체의 자기연마 모니터링에 관한 연구)

  • Lee, Sung-Ho;Kim, Sang-Oh;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.304-309
    • /
    • 2011
  • A monitoring system for magnetic abrasive polishing process is necessary to ensure the polishing products the high quality and integrity. Acoustic emission (AE) signal is known to reflect the material removal phenomena in other machining processes. In a case of the magnetic abrasive polishing of non-magnetic materials, application of AE method is very difficult because of lower machining force on the surface of workpiece and the level of AE signal is extremely lower. In this study, AE sensor-based monitoring system is applied to the magnetic abrasive polishing. The relation between the level of the AE RMS and the surface roughness during the magnetic abrasive polishing of magnesium alloy steel is investigated.

Dynamical behavior of the orthotropic elastic material using an analytical solution

  • Balubaid, Mohammed;Abdo, H.;Ghandourah, E.;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.331-339
    • /
    • 2021
  • In this work, an analytical solution is provided for the dynamical response of an orthotropic non-homogeneous elastic material. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity. The analytical performances for the elastodynamic equations has been solved regarding displacements. The influences of the rotation, the magnetic field, the non-homogeneity based radial displacement and the corresponding stresses in an orthotropic material are investigated. The variations of the stresses, the displacement, and the perturbation magnetic field have been illustrated. The comparisons is performed using the previous solutions in the magnetic field absence, the non-homogeneity and the rotation.

An analytical solution for equations and the dynamical behavior of the orthotropic elastic material

  • Ramady, Ahmed;Atia, H.A.;Mahmoud, S.R.
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.315-321
    • /
    • 2021
  • In this article, an analytical solution of the dynamical behavior in an orthotropic non-homogeneity elastic material using for elastodynamics equations is investigated. The effects of the magnetic field, the initial stress, and the non-homogeneity on the radial displacement and the corresponding stresses in an orthotropic material are investigated. The analytical solution for the elastodynamic equations has solved regarding displacements. The variation of the stresses, the displacement, and the perturbation magnetic field have shown graphically. Comparisons are made with the previous results in the absence of the magnetic field, the initial stress, and the non-homogeneity. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity.

Hydration Characteristics of Coal-Fly Ash Containing High CaO Compound (CaO 화합물이 다량 함유된 비산재의 수화 특성에 관한 연구)

  • Sim, Jun-Soo;Lee, Ki-Gang;Kim, Yu-Taek;Kang, Seung-Ku
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.185-190
    • /
    • 2012
  • The purpose of this study was to examine a possibility that fly ash could be used as raw material for carbonation by conducting the experiment on magnetic separation and hydration of fly ash that contained a large amount of CaO composite. Wet magnetic separation experiment was performed to remove the component of magnetic substance that contained fly ash, which aimed at increasing the content of CaO in the non-magnetic domain. The selected fly ash was used for hydration experiment before the TG-DTA, XRF and XRD analyses were made to confirm the Ca component that could be carbonated. Then, the fly ash was turned to a hydrate that was favorable to dissociation of $Ca^{2+}$ ion. As a result, the magnetic separation enabled detecting the content of CaO component by up to 61 wt% in the non-magnetic domain. Since the hydrate was confirmed, it is believed that the fly ash can be used as raw material for carbonation.

A Study on the Applicability of High Manganese Steel to Naval Ship Hulls (고망간강의 함정 선체 적용 가능성에 관한 연구)

  • Kwangho Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.61-67
    • /
    • 2024
  • A naval mine is an effective weapon system implemented for defending defends ports and seas. A mine is an underwater weapon that poses a great threat to ships sailing over the sea from shallow areas. Most of the influence-type naval mines detect magnetic field signals from ships and determine the final time of fire. Therefore, the level of underwater electro-magnetic signatures of ships is a key requirement for determining the survival of ships in wartime situations where mines are emplaced. The main reason why the high manganese steel is attracting attention for naval ship hulls is its nature as a non-magnetic steel. The non-magnetic hull does not generate electro-magnetic signatures; thus, it has the advantage improving the stealth of the ship. In this paper, I examine whether this material can be applied in the hulls material of naval ships that must be ableto reduce underwater electro-magnetic signatures by considering the non-magnetic characteristics of the first developed high manganese steel in the world.

Teachers' Understanding of Declination and Its Explanation Presented in the Earth Science II Textbook (편각에 대한 교사의 이해와 지구과학 II 교과서의 기술)

  • Lee, Gyuho
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.585-597
    • /
    • 2014
  • This study surveys how teachers can improve their understanding about the concept of declination only through reading the material presented as non-dipole magnetic model. This study also investigates a difference between the content of declination presented in "Earth Science II" textbook under the 2009 revised National Curriculum and that of the past one. Thirty teachers in Gyeonggi province and thirty three in the city of Seoul are surveyed; they are selected from the participants of required training that provides their first grade regular teaching certification. Findings of this study are as follows. First, the study finds that teacher participants possess several misconceptions about the declination. Their typical misconception show that a compass needle directly indicates the magnetic north pole. This type of misconception is not corrected only by a reading the material. Second, the study shows that the degree of teachers' understanding about the concept of declination improves through the reading the material of a non-dipole magnetic model. Third, the study reveals that the material of nod-dipole magnetic model is more effective with teachers than students. Finally, the study suggests that explanations including non-dipole magnetic model be revised in the current textbooks.