본 논문에서는 일반 영상의 가우시안 잡음 제거에 유용한 Non-Local Means 필터를 이용하여 웨이블렛 도메인 상에서 SAR 영상의 스펙클 잡음제거 방법을 제안하고자 한다. 먼저 승법 잡음인 스펙클 잡음을 로그를 취해 가법 잡음으로 변환한 후 웨이블렛 분해하고 고주파 혹은 저주파 서브밴드에 따라 Non-Local Means 필터와 웨이블렛 임계값 처리(wavelet thresholding)를 선택적으로 적용하고 지수형태를 취해 원영상으로 복원함으로서 잡음을 제거한다. 또한, Non-Local Means 필터의 단점인 수행시간을 단축시키기 위해 통계적 t-검정을 이용하여 개선하고자 한다. 영상실험을 통한 성능평가 결과 제안된 필터는 정성적인 비교와 PSNR과 DSSIM을 통한 정량적인 비교 모두 기존의 필터보다 우수한 성능을 보였다. 통계적 t-검정을 이용해 개선된 방법은 빠른 계산 속도와 더 나은 성능을 나타냈다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권2호
/
pp.825-836
/
2016
In this paper, a speed-up technique for the non-local means (NLM) image denoising method based on local binary descriptor (LBD) is proposed. In the NLM, most of the computation time is spent on searching for non-local similar patches in the search window. The local binary descriptor which represents the structure of patch as binary strings is employed to speed up the search process in the NLM. The descriptor allows for a fast and accurate preselection of non-local similar patches by bitwise operations. Using this approach, a tradeoff between time-saving and noise removal can be obtained. Simulations exhibit that despite being principally constructed for speed, the proposed algorithm outperforms in terms of denoising quality as well. Furthermore, a parallel implementation on GPU brings NLM-LBD to real-time image denoising.
본 논문에서는 변환 영역에서 non-local means (NL-means) 방법을 이용한 효율적인 영상 잡음 제거 기법을 제안한다. 먼저 고전적인 영상 잡음 제거 기법에서부터 최근 연구되고 있는 영상 잡음 제거 기법에 대한 리뷰를 서술하고 우수한 성능을 보이는 잡음 제거 기법인 NL-means 방법을 이용한 영상 잡음 제거 기법에 대한 성능을 분석한다. NL-means 기법의 가중치를 DCT 및 LiftLT 변환 영역에서 일부 계수만을 이용하여 계산함으로써 NL-means 기법을 효율적으로 구현하는 방법을 제안한다. 제안하는 방법은 계산량을 줄여서 영상 잡음을 효율적으로 제거할 수 있을 뿐만 아니라 변환 영역에서 영상의 특성을 효율적으로 이용하여 잡음 제거시 성능을 향상시킨다. 또한 제안하는 기법은 변환 영역에서 영상의 잡음 제거와 해상도 향상을 동시에 수행할 때 효율적으로 적용할 수 있는 장점이 있다. 모의 실험을 통하여 제안하는 방법이 우수한 성능을 보이는 것을 입증한다.
본 논문에서는 노이즈에 의해 왜곡된 영상의 다운 스케일 영상들을 이용한 적응적인 비국부 평균 노이즈 제거 방식에 대해 제안한다. 다운 스케일 영상을 활용하여 국부 활동성이 높은 영역과의 유사도가 높은 패치 수를 증대시켜 비국부 평균 노이즈 제거 방식의 문제점인 국부 활동성이 높은 영역에서의 왜곡 현상 및 윤곽선 손실 현상을 감소시키기 방식에 대해 기술한다. 실험 결과를 통해 비국부 평균 방식과 비교하여 제안 방식이 평균 1.5 (dB) 성능 향상이 있음을 확인할 수 있었다.
The description of transitional flows by means of RANS equations is sometimes based on non-local approaches which require the computation of some boundary layer properties. In this work a non-local Laminar Kinetic Energy model is used to predict transitional and separated flows. Usually the non-local term of this model is evaluated along the grid lines of a structured mesh. An alternative approach, which does not rely on grid lines, is introduced in the present work. This new approach allows the use of fully unstructured meshes. Furthermore, it reduces the grid-dependence of the predicted results. The approach is employed to study the transitional flows in the T106c turbine cascade and around a NACA0021 airfoil by means of a discontinuous Galerkin method. The local nature of the discontinuous Galerkin reconstruction is exploited to implement an adaptive algorithm which automatically refines the mesh in the most significant regions.
본 논문에서는 혼합 norm을 이용한 가중치 함수 기반의 비국부 평균 노이즈 제거 방식을 제안한다. 비국부 평균 노이즈 제거 방식에서 중심 패치와 참조 패치의 오차에 대한 신뢰도는 노이즈 양 및 국부 활동성에 의존적인 특성을 갖고 있다. 본 논문에서는 혼합 norm 기반의 새로운 가중치 함수를 제안하고, 혼합 norm의 차수를 노이즈 정도 및 중심 패치의 국부 활동성에 의해 적응적으로 결정하여 비국부 평균 노이즈 제거 방식의 성능을 개선하고자 하였다. 실험 결과를 통해 기존의 비국부 평균 노이즈 제거 방식과 비교하여 제안 방식의 정량적 및 정성적 성능의 우수성을 확인할 수 있었다. 더불어, 제안 방식은 표준 유클리드 norm 기반의 다른 형태의 비국부 평균 노이즈 방식의 성능을 개선할 수 있는 능력이 있음을 확인할 수 있었다.
본 논문에서는 움직임 추정(Motion Estimation, ME), 색상 라벨링(Labeling) 그리고 Non-Local means 필터 등을 이용하여 2D 영상을 3D 입체 영상으로 변환하는 기법을 제안한다. 제안하는 기법에서는 프레임 간의 움직임 추정 방법을 사용하여 물체의 움직임 벡터를 추출하며 색상 라벨링 작업을 통해 세밀한 객체를 추출한다. 객체를 추출한 후 영상을 이동시켜서 우영상을 생성한다. 우 영상을 생성하는 과정에서 채워지지 않은 화소들이 발생하는데 전체 화소의 상관도를 고려하는 Non-local means 필터를 사용하여 이 부분을 처리한다. 생성된 우 영상과 원본 영상인 좌 영상으로 비월주사(interlace)하여 최종 3D 입체 영상을 생성한다.
본 논문에서는 먼저 주성분 분석 (Principal components analysis, PCA) 을 활용한 Non-local means (NLM) 을 소개하고, 주성분 분석을 하기 위해 필수적인 공분산 행렬 계산을 효율적으로 하는 방법을 제안한다. NLM 에서의 Neighborhood patch 의 크기를 $S{\times}S=S^2$, 이미지 전체의 픽셀 수를 ${\mathcal{Q}}$ 일 때 공분한 행렬을 계산 하기 위해서는 $S^2{\times}{\mathcal{Q}}$ 크기를 가지는 행렬간의 곱 연산이 필요하다. 결론적으로 본 논문에서는 이 행렬의 크기를 줄임으로써 PSNR (Peak signal-to-noise ratio) 의 손실 없이 NLM 의 복잡도를 줄일 수 있음을 보여준다.
Non-local means (NLM) algorithm is an effective and successful denoising method, but it is computationally heavy. To deal with this obstacle, we propose a novel NLM algorithm with fuzzy metric (FM-NLM) for image denoising in this paper. A new feature metric of visual features with fuzzy metric is utilized to measure the similarity between image pixels in the presence of Gaussian noise. Similarity measures of luminance and structure information are calculated using a fuzzy metric. A smooth kernel is constructed with the proposed fuzzy metric instead of the Gaussian weighted L2 norm kernel. The fuzzy metric and smooth kernel computationally simplify the NLM algorithm and avoid the filter parameters. Meanwhile, the proposed FM-NLM using visual structure preferably preserves the original undistorted image structures. The performance of the improved method is visually and quantitatively comparable with or better than that of the current state-of-the-art NLM-based denoising algorithms.
IEIE Transactions on Smart Processing and Computing
/
제5권1호
/
pp.49-54
/
2016
Regarding global and local factors of a set of features, a given single image or multiple images is a common approach in image processing. This paper introduces an application of an adaptive version of non-local filter whose original version searches non-local similarity for removing noise. Since most images involve texture partner in both foreground and background, extraction of signified regions with texture is a challenging task. Aiming to the detection of visual attention regions for images with texture, we present the contrast analysis of image patches located in a whole image but not nearby with assistance of the adaptive filter for estimation of non-local divergence. The method allows extraction of signified regions with texture of images of wild life. Experimental results for a benchmark demonstrate the ability of the proposed method to deal with the mentioned challenge.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.