• 제목/요약/키워드: non-linear structural analysis

검색결과 601건 처리시간 0.026초

Geometrically non-linear transient C° finite element analysis of composite and sandwich plates with a refined theory

  • Kommineni, J.R.;Kant, T.
    • Structural Engineering and Mechanics
    • /
    • 제1권1호
    • /
    • pp.87-102
    • /
    • 1993
  • A $C^{\circ}$ continuous finite element formulation of a higher order displacement theory is presented for predicting linear and geometrically non-linear in the sense of von Karman transient responses of composite and sandwich plates. The displacement model accounts for non-linear cubic variation of tangential displacement components through the thickness of the laminate and the theory requires no shear correction coefficients. In the time domain, the explicit central difference integrator is used in conjunction with the special mass matrix diagonalization scheme which conserves the total mass of the element and included effects due to rotary inertia terms. The parametric effects of the time step, finite element mesh, lamination scheme and orthotropy on the linear and geometrically non-linear responses are investigated. Numerical results for central transverse deflection, stresses and stress resultants are presented for square/rectangular composite and sandwich plates under various boundary conditions and loadings and these are compared with the results from other sources. Some new results are also tabulated for future reference.

A curved shell finite element for the geometrically non-linear analysis of box-girder beams curved in plan

  • Calik-Karakose, Ulku H.;Orakdogen, Engin;Saygun, Ahmet I.;Askes, Harm
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.221-238
    • /
    • 2014
  • A four-noded curved shell finite element for the geometrically non-linear analysis of beams curved in plan is introduced. The structure is conceived as a sequence of macro-elements (ME) having the form of transversal segments of identical topology where each slice is formed using a number of the curved shell elements which have 7 degrees of freedom (DOF) per node. A curved box-girder beam example is modelled using various meshes and linear analysis results are compared to the solutions of a well-known computer program SAP2000. Linear and non-linear analyses of the beam under increasing uniformly distributed loads are also carried out. In addition to box-girder beams, the proposed element can also be used in modelling open-section beams with curved or straight axes and circular plates under radial compression. Buckling loads of a circular plate example are obtained for coarse and successively refined meshes and results are compared with each other. The advantage of this element is that curved systems can be realistically modelled and satisfactory results can be obtained even by using coarse meshes.

불규칙 가진을 받는 포화 진동계의 응답제어에 관한 확률밀도 추정 (Approximate Probability Density for the Controlled Responses of Randomly Excited Saturated Oscillator)

  • 박지훈;김홍진;민경원
    • 한국전산구조공학회논문집
    • /
    • 제16권3호
    • /
    • pp.301-309
    • /
    • 2003
  • 제어기 포화를 고려한 비선형 제어 알고리듬은 폭넓게 연구되었으나 비선형성과 확률밀도함수(PDF)의 해석해가 존재하지 않기 때문에 알고리듬의 확률적 연구가 미진하여 왔다. 본 연구에서는, 제어기포화를 고려한 비선형 제어 알고리듬의 확률적 해석 방법이 등가 비선형 시스템 방법에 기초하여 제안되었다. 가우시안 백색잡음과 Kanai-Tagimi 필터통과 백색잡음에 의한 구조물 응답에 대하여 제안된 PDF 근사식을 이용하여 얻어진 결과를 통계적으로 얻어진 구조물 응답 PDF와 비교하여 정확성을 검증하였다.

A novel approach to damage localisation based on bispectral analysis and neural network

  • Civera, M.;Fragonara, L. Zanotti;Surace, C.
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.669-682
    • /
    • 2017
  • The normalised version of bispectrum, the so-called bicoherence, has often proved a reliable method of damage detection on engineering applications. Indeed, higher-order spectral analysis (HOSA) has the advantage of being able to detect non-linearity in the structural dynamic response while being insensitive to ambient vibrations. Skewness in the response may be easily spotted and related to damage conditions, as the majority of common faults and cracks shows bilinear effects. The present study tries to extend the application of HOSA to damage localisation, resorting to a neural network based classification algorithm. In order to validate the approach, a non-linear finite element model of a 4-meters-long cantilever beam has been built. This model could be seen as a first generic concept of more complex structural systems, such as aircraft wings, wind turbine blades, etc. The main aim of the study is to train a Neural Network (NN) able to classify different damage locations, when fed with bispectra. These are computed using the dynamic response of the FE nonlinear model to random noise excitation.

Random vibration analysis of structures by a time-domain explicit formulation method

  • Su, Cheng;Xu, Rui
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.239-260
    • /
    • 2014
  • Non-stationary random vibration of linear structures with uncertain parameters is investigated in this paper. A time-domain explicit formulation method is first presented for dynamic response analysis of deterministic structures subjected to non-stationary random excitations. The method is then employed to predict the random responses of a structure with given values of structural parameters, which are used to fit the conditional expectations of responses with relation to the structural random parameters by the response surface technique. Based on the total expectation theorem, the known conditional expectations are averaged to yield the random responses of stochastic structures as the total expectations. A numerical example involving a frame structure is investigated to illustrate the effectiveness of the present approach by comparison with the power spectrum method and the Monte Carlo simulation method. The proposed method is also applied to non-stationary random seismic analysis of a practical arch bridge with structural uncertainties, indicating the feasibility of the present approach for analysis of complex structures.

Novel optimal intensity measures for probabilistic seismic analysis of RC high-rise buildings with core

  • Pejovic, Jelena R.;Serdar, Nina N.;Pejovic, Radenko R.
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.443-452
    • /
    • 2018
  • In this paper the new intensity measures (IMs) for probabilistic seismic analysis of RC high-rise buildings with core wall structural system are proposed. The existing IMs are analysed and the new optimal ones are presented. The newly proposed IMs are based on the existing ones which: 1) comprise a wider range of frequency velocity spectrum content and 2) are defined as the integral along the velocity spectrum. In analysis characteristics of optimal IMs such as: efficiency, practicality, proficiency and sufficiency are considered. As prototype buildings, RC high-rise buildings with core wall structural system and with characteristic heights: 20-storey, 30-storey and 40-storey, are selected. The non-linear 3D models of the prototype buildings are constructed. 720 non-linear time-history analyses are conducted for 60 ground motion records with a wide range of magnitudes, distances to source and various soil types. Statistical processing of results and detailed regression analysis are performed and appropriate demand models which relate IMs to demand measures (DMs), are obtained. The conducted analysis has shown that the newly proposed IMs can efficiently predict the DMs with minimum dispersion and satisfactory practicality as compared to the other commonly used IMs (e.g., PGA and $S_a(T_1)$). The newly proposed IMs overcome difficulties in calculating of integral along the velocity spectrum and present adequate replacement for IMs which comprise a wider range of frequency velocity spectrum content.

동적감쇠를 고려한 탄성 현수선 케이블의 비선형 해석에 관한 연구 (A study on the non-linear analysis of the elastic catenary cable considering kinetic damping)

  • 한상을;정명채;이진섭
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.331-338
    • /
    • 2000
  • In this paper, a non-linear finite element formulation for the spatial cable-net structures is simulated and using this formulation, the characteristics of structural behaviors for the elastic catenary cable are examined In the simulating procedure for the elastic catenary cable, nodal forces and tangential stiffness matrices are derived using catenary parameters of the exact solutions by a governing differential equation of catenary cable, cable self-weights and unstressed cable length. Dynamic Relaxation Method that considers kinetic damping is used for the structure analysis and Newton Raphson Method is used to verify the accuracy of solutions. In the analysis of two dimensional cable, the results obtain from the elastic catenary elements are shown more accurate than does of truss elements and in the case of spatial cable-net structures, Dynamic Relaxation Method is more stable to be converged than Newton Raphson Method.

  • PDF

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

Using a feed forward ANN to model the inelastic behaviour of confined sandwich panels

  • Marante, Maria E.;Barreto, Wilmer J.;Picon, Ricardo A.
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.545-552
    • /
    • 2019
  • The analysis and design of complex structures like sandwich-panel elements are difficult; the use of finite element method for the analysis is complicated and time consuming when non-linear effects are considered. On the other hand, artificial neural network (ANN) models can capture the non-linear effects and its application requires lesser computational demand. Two ANN models were trained, tested and validated to compute the force for a given displacement of a sandwich-type roof element; 2555 force and element deformation pairs were used for training the ANN models. For the models trained without considering the damping effect, there were two values in the input layer: maximum displacement and current displacement, and for the model considering damping, displacement from the previous step was used as an additional input. Totally, 400 ANN models were trained. Results show that there is a good agreement between the experimental and simulated data, and the models showed a good performance with a mean square error value of 4548.85. Both the ANN models could simulate the inelastic behaviour, loss of rigidity, and evolution of permanent displacements. The models could also interpolate and extrapolate, which enables them to be used as an analysis and design tool for such complex elements.

성층권 비행선 기낭 막재료에 대한 비선형 거동 연구 (Non-Linear Behavior Analysis for Stratospheric Airship Envelope)

  • 서영욱;우경식
    • Composites Research
    • /
    • 제18권2호
    • /
    • pp.30-37
    • /
    • 2005
  • 본 논문에서는 평직구조를 갖는 성층권 비행선 기낭의 하중막재에 대한 비선형 유한요소 해석 결과를 기술하였다. 평직구조를 갖는 하중막재의 미세구조를 3차원적으로 구현하였고, Updated Lagrangian 방법을 사용하여 기하학적 비선형성을 고려하였다 계산결과, 큰 변형률에서 비선형해석으로부터 얻은 응력-변형률 곡선은 선형해석의 결과와 큰 차이를 보였다. 또한 응력-변형률 곡선으로부터 얻은 비선형 탄성계수 값은 선형 탄성계수보다 큰 값을 보였는데 그 차이는 섬유의 굴곡도가 작은 경우 더욱 두드러지게 나타났다