• 제목/요약/키워드: non-linear simulation

검색결과 761건 처리시간 0.031초

핸드-아이 보정과 능동 스테레오 비젼의 일반적 해석 (The General Analysis of an Active Stereo Vision with Hand-Eye Calibration)

  • 김진대;이재원;신찬배
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.83-83
    • /
    • 2004
  • The analysis of relative pose(position and rotation) between stereo cameras is very important to determine the solution that provides three-dimensional information for an arbitrary moving target with respect to robot-end. In the space of free camera-model, the rotational parameters act on non-linear factors acquiring a kinematical solution. In this paper the general solution of active stereo that gives a three-dimensional pose of moving object is presented. The focus is to achieve a derivation of linear equation between a robot′s end and active stereo cameras. The equation is consistently derived from the vector of quaternion space. The calibration of cameras is also derived in this space. Computer simulation and the results of error-sensitivity demonstrate the successful operation of the solution. The suggested solution can also be applied to the more complex real time tracking and quite general and are applicable in various stereo fields.

핸드-아이 보정과 능동 스테레오 비젼의 일반적 해석 (The General Analysis of an Active Stereo Vision with Hand-Eye Calibration)

  • 김진대;이재원;신찬배
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.89-90
    • /
    • 2004
  • The analysis of relative pose(position and rotation) between stereo cameras is very important to determine the solution that provides three-dimensional information for an arbitrary moving target with respect to robot-end. In the space of free camera-model, the rotational parameters act on non-linear factors acquiring a kinematical solution. In this paper the general solution of active stereo that gives a three-dimensional pose of moving object is presented. The focus is to achieve a derivation of linear equation between a robot's end and active stereo cameras. The equation is consistently derived from the vector of quaternion space. The calibration of cameras is also derived in this space. Computer simulation and the results of error-sensitivity demonstrate the successful operation of the solution. The suggested solution can also be applied to the more complex real time tracking and quite general and are applicable in various stereo fields.

스플리터 단면형상변화에 따른 플라스틱 유량계의 유동진동특성 (Fluidic oscillation characteristics of plastic flow meter with the variation of cross-sectional shape of splitters)

  • 이성희
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, design technology of a non-mechanical flow meter using fluidic oscillation generated during the fluid flow in the chamber was investigated. To with respect to design a splitter, which is the most important factor in fluid oscillation, a transient flow simulation analysis was performed for three types of shapes and changes in inlet flow velocity. The oscillation characteristics with respect to the time in each case were compared, and it was confirmed that the SM03 model was the best among the presented models. In addition, the FFT analysis of the fluid oscillation results for the SM03 model was used to obtain a linear correlation between the flow velocity change and the maximum frequency, and a frequency of 20.957 (Hz/m/s) per unit flow velocity was obtained. Finally, injection molding simulation and molding experiment of the chamber with the designed splitter were performed.

Influence of non-Gaussian characteristics of wind load on fatigue damage of wind turbine

  • Zhu, Ying;Shuang, Miao
    • Wind and Structures
    • /
    • 제31권3호
    • /
    • pp.217-227
    • /
    • 2020
  • Based on translation models, both Gaussian and non-Gaussian wind fields are generated using spectral representation method for investigating the influence of non-Gaussian characteristics and directivity effect of wind load on fatigue damage of wind turbine. Using the blade aerodynamic model and multi-body dynamics, dynamic responses are calculated. Using linear damage accumulation theory and linear crack propagation theory, crack initiation life and crack propagation life are discussed with consideration of the joint probability density distribution of the wind direction and mean wind speed in detail. The result shows that non-Gaussian characteristics of wind load have less influence on fatigue life of wind turbine in the area with smaller annual mean wind speeds. Whereas, the influence becomes significant with the increase of the annual mean wind speed. When the annual mean wind speeds are 7 m/s and 9 m/s at hub height of 90 m, the crack initiation lives under softening non-Gaussian wind decrease by 10% compared with Gaussian wind fields or at higher hub height. The study indicates that the consideration of the influence of softening non-Gaussian characteristics of wind inflows can significantly decrease the fatigue life, and, if neglected, it can result in non-conservative fatigue life estimates for the areas with higher annual mean wind speeds.

Active Trajectory Tracking Control of AMR using Robust PID Tunning

  • Tae-Seok Jin
    • 한국산업융합학회 논문집
    • /
    • 제27권4_1호
    • /
    • pp.753-758
    • /
    • 2024
  • Trajectory tracking of the AMR robot is one research for the AMR robot navigation. For the control system of the Autonomous mobile robot(AMR) being in non-honolomic system and the complex relations among the control parameters, it is d ifficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive tracking controller based on the PID for AMR robot trajectory tracking. The method uses a non-linear model of AMR robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven non-holonomic AMR robot is carried out in the velocity and orientation tracking control of the non-holonomic AMR. The simulation results of wheel type AMR robot platform show that the proposed controller is more robust than the conventional back-stepping controller to show the effectiveness of the proposed algorithm.

비선형 외란 관측기를 이용한 모델 불확실성을 고려한 유도전동기의 회전자 저항 추종 (Rotor Resistance Estimation Of Induction Motor With Model uncertainty Using NonLinear Disturbance Observer)

  • 아리프아르살란;박기광;이선영;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1656_1657
    • /
    • 2009
  • This paper presents a new method for estimating rotor resistance of induction motor. The rotor resistance changes dramatically with temperature and frequency. Speed is controlled by PID as it is simplest and most intuitive control method. The change in rotor resistance has a great influence on the performance of IM. In this paper rotor resistance is estimated using Non Linear Disturbance Observer. The model uncertainty and system non linearity are treated as disturbance in this method. Using NDO it does not require an accurate dynamic model to achieve high precision motor control. Controller with NDO has more superior tracking performance. Simulation results are presented to show the validity of the proposed controller.

  • PDF

PID 제어기로 안정화 가능한 비최소 위상 시스템에 대한 외란 관측기 설계 (Disturbance Observer Design for a Non-minimum Phase System That Is Stabilizable via PID Control)

  • 손영익;김성종;정구종;심형보
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1612-1617
    • /
    • 2008
  • Since most disturbance observer (DOB) approaches have been limited to minimum-phase systems (or systems having no zero dynamics), we propose a new DOB structure that can be applied to non-minimum phase systems. The new structure features an additional system, which is called as V-filter, whose role is to yield a minimum phase system when connected with the plant in parallel. In order to design the V-filter systematically we first consider a class of linear systems that can be stabilized via PID controller. By inverting the controller's transfer function, we can simply construct the filter. A convenient way of designing V-filter is presented by using an iterative linear matrix inequality (LMI) algorithm. With an illustrative example the simulation result shows that substantial improvement in the performance has been achieved compared with the control system without the DOB.

On the non-linearities of ship's restoring and the Froude-Krylov wave load part

  • Matusiak, Jerzy Edward
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.111-115
    • /
    • 2011
  • When formulating a general, non-linear mathematical model of ship dynamics in waves the hydrostatic forces and moments along with the Froude-Krylov part of wave load are usually concerned. Normally radiation and the diffraction forces are regarded as linear ones. The paper discusses briefly few approaches, which can be used in this respect. The concerned models attempt to model the non-linearities of the surface waves; both regular and the irregular ones, and the nonlinearities of the restoring forces and moments. The approach selected in the Laidyn method, which is meant for the evaluation of large amplitude motions in the 6 degrees-of-freedom, is presented in a bigger detail. The workability of the method is illustrated with the simulation of ship motions in irregular stern quartering waves.

Optimal Controller for Near-Space Interceptor with Actuator Saturation

  • Fan, Guo-Long;Liang, Xiao-Geng;Hou, Zhen-Qian;Yang, Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권3호
    • /
    • pp.256-263
    • /
    • 2013
  • The saturation of the actuator impairs the response performance of the near space interceptor control system. A control system based on the properties of linear tracking system is designed for this problem. The properties are that the maximum value of the pseudo-Lyapunov function of the linear tracking control system do not present at the initial state but at the steady state, based on which the bounded stability problem is converted into linear tracking problem. The pseudo-Lyapunov function of the linear tracking system contain the input variables; the amplitude and frequency of the input variables affect the stability of the nonlinear control system. Designate expected closed-loop poles area for different input commands and obtain a controller which is function of input variables. The coupling between variables and linear matrices make the control system design problem non-convex. The non-convex problem is converted into a convex LMI according to the Shur complement lemma and iterative algorithm. Finally the simulation shows that the designed optimal control system is quick and accurate; the rationality of the presented design techniques is validated.

영구자석 여자 횡축형 선형전동기의 추력맥동 저감 제어기법 (Control Method for Minimizing Thrust Ripple of PM Excited Transverse Flux Linear Motor)

  • 안종보;강도현;김지원;정수진;임태윤;박준호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권1호
    • /
    • pp.16-23
    • /
    • 2004
  • Permanent magnet-excited transverse flux linear motor(TFLM) is known to have more excellent ratio of force to weight than any other linear motors. But, thrust generated by phase current is non-linear with regard to current and relative position like switched reluctance motor. This makes current and speed controller design difficult. This paper presents a method on minimization of thrust ripple of permanent magnet-excited transverse flux linear motor. Using genetic algorithm(GA), optimal current waveform can be found under the constraint conditions such as current limit, minimum of ohmic loss and limited rate of change of current etc. The effectiveness is verified through computer simulation and experimental test results.