• Title/Summary/Keyword: non-linear seismic analysis

Search Result 224, Processing Time 0.024 seconds

Multilevel performance-based procedure applied to moderate seismic zones in Europe

  • Catalan, Ariel;Foti, Dora
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • The Performance-based Earthquake Engineering (PBEE) concept implies the definition of multiple target performance levels of damage which are expected to be achieved (or not exceeded), when the structure is subjected to earthquake ground motion of specified intensity. These levels are associates to different return period (RP) of earthquakes and structural behaviors quantified with adopted factors or indexes of control. In this work an 8-level PBEE study is carried out, finding different curves for control index or Engineering Demand Parameters (EDP) of levels that assess the structural behavior. The results and the curves for each index of control allow to deduce the structural behavior at an a priori unspecified RP. A general methodology is proposed that takes into account a possible optimization process in the PBEE field. Finally, an application to 8-level seismic performance assessment to structure in a Spanish seismic zone permits deducing that its behavior is deficient for high seismic levels (RP > 475 years). The application of the methodology to a low-to-moderate seismic zone case proves to be a good tool of structural seismic design, applying a more sophisticated although simple PBEE formulation.

Optimal intensity measures for probabilistic seismic demand models of RC high-rise buildings

  • Pejovic, Jelena R.;Serdar, Nina N.;Pejovic, Radenko R.
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.221-230
    • /
    • 2017
  • One of the important phases of probabilistic performance-based methodology is establishing appropriate probabilistic seismic demand models (PSDMs). These demand models relate ground motion intensity measures (IMs) to demand measures (DMs). The objective of this paper is selection of the optimal IMs in probabilistic seismic demand analysis (PSDA) of the RC high-rise buildings. In selection process features such as: efficiency, practically, proficiency and sufficiency are considered. RC high-rise buildings with core wall structural system are selected as a case study building class with the three characteristic heights: 20-storey, 30-storey and 40-storey. In order to determine the most optimal IMs, 720 nonlinear time-history analyses are conducted for 60 ground motion records with a wide range of magnitudes and distances to source, and for various soil types, thus taking into account uncertainties during ground motion selection. The non-linear 3D models of the case study buildings are constructed. A detailed regression analysis and statistical processing of results are performed and appropriate PSDMs for the RC high-rise building are derived. Analyzing a large number of results it are adopted conclusions on the optimality of individual ground motion IMs for the RC high-rise building.

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis (비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sang-Hee;Lim, Jin-Sun;Im, Chae-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.20-27
    • /
    • 2021
  • The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.

Estimation of fundamental natural period of vibration for reinforced concrete shear walls systems

  • Shatnawi, Anis S.;Al-Beddawe, Esra'a H.;Musmar, Mazen A.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.295-310
    • /
    • 2019
  • This study attempts to develop new simplified approximate formulas to predict the fundamental natural periods of vibration (T) for bearing wall systems engaged with special reinforced concrete shear walls (RCSW) under seismic loads. Commonly, seismic codes suggested empirical formulas established by regression analysis of measured T for buildings during earthquake motions. These formulas depend on structure type, building height, number, height and length of SW, and ratio of SW area to base area of structure. In this study, a parametric investigation is performed for T of 110 selected models of bearing RCSW systems with varying structural height, configuration of horizontal plans including building width, number and width of bays, presence of middle corridors and core SWs. For this purpose, a 3D non-linear response time history (TH) analysis is implemented using ETABS v16.2.1. New formulas to estimate T are anticipated and compared with those obtained from formulas of IBC 2012 and ASCE/SEI 7-10. Moreover, the study examines responses of an arbitrarily two selected test model of 60 m and 80 m in height with presence of SWs having middle corridors. It is observed that the performance of the tested buildings is different through arising of considerable errors when using codes' formulas for estimating T. Accordingly, using the present proposed formulas exhibits more reasonable and safer design compared to codes' formulas. The results showed that equitable enhancement is promising to improve T formulas approaching enhanced and accurate estimation of T with reliable analysis, design, and evaluation of bearing RCSW systems.

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

Evaluation of ductility capacity of steel-timber hybrid buildings for seismic design in Taiwan

  • Chen, Pei-Ching;Su, I-Ping
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.197-206
    • /
    • 2022
  • Recently, steel-timber hybrid buildings have become prevalent worldwide because several advantages of both steel and timber structures are maintained in the hybrid system. In Taiwan, seismic design specification related to steel-timber hybrid buildings remains void. In this study, the ductility capacity of steel-timber hybrid buildings in Taiwanese seismic design specification is first proposed and evaluated using nonlinear incremental dynamic analysis (IDA). Three non-linear structural models, 12-story, 8-story, and 6-story steel-timer hybrid buildings were constructed using OpenSees. In each model, Douglas-fir was adopted to assemble the upper 4 stories as a timber structure while a conventional steel moment-resisting frame was designated in the lower part of the model. FEMA P-695 methodology was employed to perform IDAs considering 44 earthquakes to assess if the ductility capacity of steel-timber hybrid building is appropriate. The analytical results indicate that the current ductility capacity of steel moment-resisting frames can be directly applied to steel-timber hybrid buildings if the drift ratio of each story under the seismic design force for buildings in Taiwan is less than 0.3%. As a result, engineers are able to design a steel-timber hybrid building straightforwardly by following current design specification. Otherwise, the ductility capacity of steel-timber hybrid buildings must be modified which depends on further studies in the future.

Seismic Performance Evaluation of Complex-Shaped Tall Buildings by Lateral Resisting Systems (횡력저항시스템에 따른 비정형 초고층건물 내진성능평가)

  • Youn, Wu-Seok;Lee, Dong-Hun;Cho, Chang-Hee;Kim, Eun-Seong;Lee, Dong-Chul;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.513-523
    • /
    • 2012
  • The objective of this research is to examine how the lateral resisting system of selected prototypes are affected by seismic zone effect and shape irregularity on its seismic performance. The lateral resisting systems are divided into the three types, diagrid, braced tube, and outrigger system. The prototype models were assumed to be located in LA, a high-seismicity region, and in Boston, a low-seismicity region. The shape irregularity was classified with rotated angle of plane, $0^{\circ}$, $1^{\circ}$, $2^{\circ}$. This study performed two parts of analyses, Linear Response and Non-Linear Response History(NLRH) analysis. The Linear Response analysis was used to check the displacement at the top and natural period of models. NLRH analysis was conducted to invest base shear and story drift ratio of buildings. As results, the displacement of roof and natural period of three structural systems increase as the building stiffness reduces due to the changes in rotation angle of the plane. Also, the base shear is diminished by the same reason. The result of NLRH, the story drift ratio, that was subject to Maximum Considered Earthquake(MCE) satisfied 0.045, a recommended limit according to Tall Building Initiative(TBI).

Examination of Seismic Performance for Structure with Seismic Members made by High Strength Steel (고강도강 내진성능 향상부재를 적용한 건물 성능 비교)

  • Kim, Moonjeong;Ha, Tae Uk;Cho, Sukhee
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.281-288
    • /
    • 2015
  • Seismic members like damper do not have any treatment of preventing story stiffness reduction after elastic yielding of stories causing story collapse. This paper suggests a method able to prevent story stiffness reduction using high-strength steel. This paper suggests these also : (1) High-strength steel stud column reinforcing story stiffness reduction until story drift 0.02rad can be designed in small area without adjusting layout. (2) Suggested seismic member installing at lowest level shows effects to preventing deformation concentration under huge seismic waves.

Random vibration analysis of structures by a time-domain explicit formulation method

  • Su, Cheng;Xu, Rui
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.239-260
    • /
    • 2014
  • Non-stationary random vibration of linear structures with uncertain parameters is investigated in this paper. A time-domain explicit formulation method is first presented for dynamic response analysis of deterministic structures subjected to non-stationary random excitations. The method is then employed to predict the random responses of a structure with given values of structural parameters, which are used to fit the conditional expectations of responses with relation to the structural random parameters by the response surface technique. Based on the total expectation theorem, the known conditional expectations are averaged to yield the random responses of stochastic structures as the total expectations. A numerical example involving a frame structure is investigated to illustrate the effectiveness of the present approach by comparison with the power spectrum method and the Monte Carlo simulation method. The proposed method is also applied to non-stationary random seismic analysis of a practical arch bridge with structural uncertainties, indicating the feasibility of the present approach for analysis of complex structures.

Soft story retrofit of low-rise braced buildings by equivalent moment-resisting frames

  • Ebadi, Parviz;Maghsoudi, Ahmad;Mohamady, Hessam
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.621-632
    • /
    • 2018
  • Soft-story buildings have bottom stories much less rigid than the top stories and are susceptible to earthquake damage. Therefore, the seismic design specifications need strict design considerations in such cases. In this paper, a four-story building was investigated as a case study and the effects of X-braces elimination in its lower stories studied. In addition, the possibility of replacement of the X-braces in soft-stories with equivalent moment resisting frame inspected in two different phases. In first phase, the stiffness of X-braces and equivalent moment-resisting frames evaluated using classic equations. In final phase, diagonals removed from the lowest story to develop a soft-story and replaced with moment resisting frames. Then, the seismic stiffness variation of moment-resisting frame evaluated using nonlinear static and dynamic analyses. The results show that substitution of braced frames with an equivalent moment-resisting frame of the same stiffness increases story drift and reduces energy absorption capacity. However, it is enough to consider the needs of building codes, even using equivalent moment resisting frame instead of X-Braces, to avoid soft-story stiffness irregularity in seismic design of buildings. Besides, soft-story development in the second story may be more critical under strong ground excitations, because of interaction of adjacent stories.