• Title/Summary/Keyword: non-linear problem

Search Result 678, Processing Time 0.027 seconds

Analysis on Fitness of Contents Selected for Data Structure Education in Elementary School Curriculum (초등교육과정에서 자료구조 교육을 위한 내용 선정의 적합성 조사 분석)

  • Mun, Seong-Yun;Shin, Soo-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.311-320
    • /
    • 2020
  • This study conducted a comparative analysis on domestic and foreign computer science curriculum, in order to introduce the data structure education as a core foundation of computer science. The findings show that the scope and level of data structure contents included in elementary school software education are poorer than those in U.S.A and England. To resolve such a problem, it selected some data structure education factors and a Delphi survey about the importance of contents and the fitness of education periods were administered to experts. Although they responded that 'text information', 'array', 'stack' and 'queue' for linear structures', and 'tree' for non-linear structures are important, their opinions were different in education periods by its factors. The generalization of the findings may be limited, given that the analysis was based on the survey of some experts, but this study has an implication, in that it provides important information for improving elementary school software curriculum for the introduction of data structures.

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare;Daria K. Voronkova;Omid Faraji;Hamidreza Aghajanirefah;Hamid Malek Nia;Mohammad Gholami;Mojtaba Gorji Azandariani
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.473-487
    • /
    • 2024
  • The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.

Differential cubature method for buckling analysis of arbitrary quadrilateral thick plates

  • Wu, Lanhe;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.259-274
    • /
    • 2003
  • In this paper, a novel numerical solution technique, the differential cubature method is employed to study the buckling problems of thick plates with arbitrary quadrilateral planforms and non-uniform boundary constraints based on the first order shear deformation theory. By using this method, the governing differential equations at each discrete point are transformed into sets of linear homogeneous algebraic equations. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Detailed formulation and implementation of this method are presented. The buckling parameters are calculated through solving a standard eigenvalue problem by subspace iterative method. Convergence and comparison studies are carried out to verify the reliability and accuracy of the numerical solutions. The applicability, efficiency, and simplicity of the present method are demonstrated through solving several sample plate buckling problems with various mixed boundary constraints. It is shown that the differential cubature method yields comparable numerical solutions with 2.77-times less degrees of freedom than the differential quadrature element method and 2-times less degrees of freedom than the energy method. Due to the lack of published solutions for buckling of thick rectangular plates with mixed edge conditions, the present solutions may serve as benchmark values for further studies in the future.

Sum MSE Minimization for Downlink Multi-Relay Multi-User MIMO Network

  • Cho, Young-Min;Yang, Janghoon;Seo, Jeongwook;Kim, Dong Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2722-2742
    • /
    • 2014
  • We propose methods of linear transceiver design for two different power constraints, sum relay power constraint and per relay power constraint, which determine signal processing matrices such as base station (BS) transmitter, relay precoders and user receivers to minimize sum mean square error (SMSE) for multi-relay multi-user (MRMU) networks. However, since the formulated problem is non-convex one which is hard to be solved, we suboptimally solve the problems by defining convex subproblems with some fixed variables. We adopt iterative sequential designs of which each iteration stage corresponds to each subproblem. Karush-Kuhn-Tucker (KKT) theorem and SMSE duality are employed as specific methods to solve subproblems. The numerical results verify that the proposed methods provide comparable performance to that of a full relay cooperation bound (FRCB) method while outperforming the simple amplify-and-forward (SAF) and minimum mean square error (MMSE) relaying in terms of not only SMSE, but also the sum rate.

A Study on Inventory Control Policy for Semi-Finished Product and Optional Components (반제품과 선택품의 재고관리 정책에 대한 연구)

  • Lee, Dongju;Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.31-37
    • /
    • 2013
  • In this paper, we develop an efficient approach to solve a continuous review inventory system with a budget constraint when the semi-finished product and optional components are required to be assembled. We are, in particular, interested in a budget constraint that includes a service level. The service cost, such as labor and facility costs, tends to increase as the service level increase, and it makes the problem difficult to solve. Assuming that the reorder point for a semi-finished product is given, we show that the order quantity for the semi-finished product and the order quantity and reorder point for optional components can be determined by minimizing the total cost that includes setup cost, inventory holding cost, and shortage cost. The performance of the proposed approach is tested by numerical examples. By using sensitivity analysis, we conclude that, as the reorder point for semi-finished product increases, the order quantity for semi-finished product increases, whereas the order quantity and reorder point of optional components decreases.

The design considerations of steel braced frame for seismic retrofit through increasing the lateral strength of existing RC buildings (철골브레이스에 의한 기존 RC건축물의 강도상승형 내진보강을 위한 설계고려사항)

  • Ahn, Choong Weon;Yoon, Jeong Hwan;Song, Dong Yub;Chang, Buhm Soo;Min, Chan Gi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.293-303
    • /
    • 2013
  • This paper deals with steel braced frame as increasing the lateral strength and ductility in order to seismic retrofit of existing buildings and discusses the designing criteria and calculation method of retrofitted buildings. The addition of steel braced frame can be effective for increasing the lateral strength and ductility of existing buildings. However, There is a problem in utilizing this method. It is the approach to provide an adequate connection between the existing RC frame and the installed steel braced frame, because global strength by failure mode(three type) depends on detail of connection and strength of existing RC frame. So, the designer must be confirmed if it satisfies the required performance or not. Failure mode of type I is the most appropriate for increasing the lateral strength and ductility. Seismic performance evaluation and strength calculation of seismic retrofit are performed by guideline by KISTEC(Korea Infrastructure Safety & Technology)'s "seismic performance evaluation and rehabilitation of existing buildings" and Japan Building Disaster Prevention Association. Buildings are modeled and non-linear pushover analysis are performed using MIDAS program.

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium

  • Akbas, Seref D.
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1125-1143
    • /
    • 2016
  • Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on modified couple stress theory (MCST). The nanobeam is excited by a transverse triangular force impulse modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic foundation.The damping effect is considered by using the Kelvin-Voigt viscoelastic model. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Timoshenko beam theory by using finite element method. The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. Numerical results are presented to investigate the influences the material length scale parameter, the parameter of the elastic medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses of nanobeams.

Pilot Symbol Assisted Weighted Data Fusion Scheme for Uplink Base-Station Cooperation System

  • Zhang, Zhe;Yang, Jing;Zhang, Jiankang;Mu, Xiaomin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.528-544
    • /
    • 2015
  • Base Station Cooperation (BSC) has been a promising technique for combating the Inter-Cell Interference (ICI) by exchanging information through a high-speed optical fiber back-haul to increase the diversity gain. In this paper, we propose a novel pilot symbol assisted data fusion scheme for distributed Uplink BSC (UBSC) based on Differential Evolution (DE) algorithm. Furthermore, the proposed scheme exploits the pre-defined pilot symbols as the sample of transmitted symbols to constitute a sub-optimal Weight Calculation (WC) model. To circumvent the non-linear programming problem of the proposed sub-optimal model, DE algorithm is employed for searching the proper fusion weights. Compared with the existing equal weights based soft combining scheme, the proposed scheme can adaptively adjust the fusion weights according to the accuracy of cooperative information, which remains the relatively low computational complexity and back-haul traffic. Performance analysis and simulation results show that, the proposed scheme can significantly improve the system performance with the pilot settings of the existing standards.

Post-buckling analysis of aorta artery under axial compression loads

  • Akbas, Seref Doguscan;Mercan, Kadir;Civalek, Omer
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.255-264
    • /
    • 2020
  • Buckling and post-buckling cases are often occurred in aorta artery because it affected by higher pressure. Also, its stability has a vital importance to humans and animals. The loss of stability in arteries may lead to arterial tortuosity and kinking. In this paper, post-buckling analysis of aorta artery is investigated under axial compression loads on the basis of Euler-Bernoulli beam theory by using finite element method. It is known that post-buckling problems are geometrically nonlinear problems. In the geometrically nonlinear model, the Von Karman nonlinear kinematic relationship is employed. Two types of support conditions for the aorta artery are considered. The considered non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The aorta artery is modeled as a cylindrical tube with different average diameters. In the numerical results, the effects of the geometry parameters of aorta artery on the post-buckling case are investigated in detail. Nonlinear deflections and critical buckling loads are obtained and discussed on the post-buckling case.

Optimal Setting of Overcurrent Relay in Distribution Systems Using Adaptive Evolutionary Algorithm (적응진화연산을 이용한 배전계통의 과전류계전기 최적 정정치 결정)

  • Jeong, Hee-Myung;Lee, Hwa-Seok;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1521-1526
    • /
    • 2007
  • This paper presents the application of Adaptive Evolutionary Algorithm (AEA) to search an optimal setting of overcurrent relay coordination to protect ring distribution systems. The AEA takes the merits of both a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner to use the global search capability of GA and the local search capability of ES. The overcurrent relay settings and coordination requirements are formulated into a set of constraint equations and an objective function is developed to manage the overcurrent relay settings by the Time Coordination Method. The domain of overcurrent relays coordination for the ring-fed distribution systems is a non-linear system with a lot of local optimum points and a highly constrained optimization problem. Thus conventional methods fail in searching for the global optimum. AEA is employed to search for the optimum relay settings with maximum satisfaction of coordination constraints. The simulation results show that the proposed method can optimize the overcurrent relay settings, reduce relay mis-coordinated operations, and find better optimal overcurrent relay settings than the present available methods.