• 제목/요약/키워드: non-linear elasticity

검색결과 67건 처리시간 0.027초

Fundamental vibration frequency prediction of historical masonry bridges

  • Onat, Onur
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.155-162
    • /
    • 2019
  • It is very common to find an empirical formulation in an earthquake design code to calculate fundamental vibration period of a structural system. Fundamental vibration period or frequency is a key parameter to provide adequate information pertinent to dynamic characteristics and performance assessment of a structure. This parameter enables to assess seismic demand of a structure. It is possible to find an empirical formulation related to reinforced concrete structures, masonry towers and slender masonry structures. Calculated natural vibration frequencies suggested by empirical formulation in the literatures has not suits in a high accuracy to the case of rest of the historical masonry bridges due to different construction techniques and wide variety of material properties. For the listed reasons, estimation of fundamental frequency gets harder. This paper aims to present an empirical formulation through Mean Square Error study to find ambient vibration frequency of historical masonry bridges by using a non-linear regression model. For this purpose, a series of data collected from literature especially focused on the finite element models of historical masonry bridges modelled in a full scale to get first global natural frequency, unit weight and elasticity modulus of used dominant material based on homogenization approach, length, height and width of the masonry bridge and main span length were considered to predict natural vibration frequency. An empirical formulation is proposed with 81% accuracy. Also, this study draw attention that this accuracy decreases to 35%, if the modulus of elasticity and unit weight are ignored.

Prediction of the dynamic properties in rubberized concrete

  • Habib, Ahed;Yildirim, Umut
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.185-197
    • /
    • 2021
  • Throughout the previous years, many efforts focused on incorporating non-biodegradable wastes as a partial replacement and sustainable alternative for natural aggregates in cement-based materials. Currently, rubberized concrete is considered one of the most important green concrete materials produced by replacing natural aggregates with rubber particles from old tires in a concrete mixture. The main benefits of this material, in addition to its importance in sustainability and waste management, comes from the ability of rubber to considerably damp vibrations, which, when used in reinforced concrete structures, can significantly enhance its energy dissipation and vibration behavior. Nowadays, the literature has many experimental findings that provide an interesting view of rubberized concrete's dynamic behavior. On the other hand, it still lacks research that collects, interprets, and numerically investigates these findings to provide some correlations and construct reliable prediction models for rubberized concrete's dynamic properties. Therefore, this study is intended to propose prediction approaches for the dynamic properties of rubberized concrete. As a part of the study, multiple linear regression and artificial neural networks will be used to create prediction models for dynamic modulus of elasticity, damping ratio, and natural frequency.

The refined theory of 2D quasicrystal deep beams based on elasticity of quasicrystals

  • Gao, Yang;Yu, Lian-Ying;Yang, Lian-Zhi;Zhang, Liang-Liang
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.411-427
    • /
    • 2015
  • Based on linear elastic theory of quasicrystals, various equations and solutions for quasicrystal beams are deduced systematically and directly from plane problem of two-dimensional quasicrystals. Without employing ad hoc stress or deformation assumptions, the refined theory of beams is explicitly established from the general solution of quasicrystals and the Lur'e symbolic method. In the case of homogeneous boundary conditions, the exact equations and exact solutions for beams are derived, which consist of the fourth-order part and transcendental part. In the case of non-homogeneous boundary conditions, the exact governing differential equations and solutions under normal loadings only and shear loadings only are derived directly from the refined beam theory, respectively. In two illustrative examples of quasicrystal beams, it is shown that the exact or accurate analytical solutions can be obtained in use of the refined theory.

촉각시스템을 위한 그래픽 변형 알고리즘 (Graphic Deformation Algorithm for Haptic Interface System)

  • 강원찬;김성철;김동옥;김원배;김영동
    • 전기학회논문지P
    • /
    • 제51권3호
    • /
    • pp.149-154
    • /
    • 2002
  • In this paper, we propose a new graphic deformation algorithm for haptic interface system. Our deformable model is based on non-linear elasticity, anisotropy behavior and the finite element method. Also we developed controller for high-speed communication. The proposed controller is based on the PCI/FPGA technology, which could progress the capability of the position calculating and the force data transmitting. The haptic system is composed of the 6DOF force display device, the high-speed controller, HIR library for 3D graphic deformation algorithm and the haptic rendering algorithm. The developed system will be used on constructing the dynamical virtual environment. We demonstrate the relevance of this approach for the real-time simulating deformations of elastic objects. To show the efficiency of our system, we programmed the simulation of force reflecting. As the result of experiment, we found that it has high stability and easy to control for deformable object than some other systems.

직교이방 섬유강화 복합재료의 비선형 비등방 경화법칙 (Nonlinear Anisotropic Hardening Laws for Orthotropic Fiber-Reinforced Composites)

  • 김대용;이명규;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.75-78
    • /
    • 2003
  • In order to describe the Bauschinger and transient behavior of orthotropic fiber-reinforced composites, a combined isotropic-kinematic hardening law based on the non-linear kinematic hardening rule was considered here, in particular, based on the Chaboche type law. In this modified constitutive law, the anisotropic evolution of the back-stress was properly accounted for. Also, to represent the orthotropy of composite materials, Hill's 1948 quadratic yield function and the orthotropic elasticity constitutive equations were utilized. Furthermore, the numerical formulation to update the stresses was also developed based on the incremental deformation theory for the boundary value problems. Numerical examples confirmed that the new law based on the anisotropic evolution of the back-stress complies well with the constitutive behavior of highly anisotropic materials such as fiber-reinforced composites.

  • PDF

균열을 내재한 회전체의 에너지방출률 (The Energy Release Rate for Cracks in a Rotating Continuum)

  • 이태원
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.330-337
    • /
    • 1995
  • For a rotating body with cracks, the new energy release rate equation is presented. The derived equation is different from the other researcher's results. It is a path-independent integral which excluded the derivatives of displacements near the crack tip, thereby improving the numerical accuracy of the energy release rate computation. Moreover, as the equation was derived on basis of the energy principle and non-linear elasticity without assumptions, it can applied to the cracked body with arbitrary shape under elastic-plastic deformation. Several examples are treated to demonstrate the efficiency and accuracy of the proposed method compared to existing methods.

Enhanced finite element modeling for geometric non-linear analysis of cable-supported structures

  • Song, Myung-Kwan;Kim, Sun-Hoon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제22권5호
    • /
    • pp.575-597
    • /
    • 2006
  • Enhanced three-dimensional finite elements for geometrically nonlinear analysis of cable-supported structures are presented. The cable element, derived by using the concept of an equivalent modulus of elasticity and assuming the deflection curve of a cable as catenary function, is proposed to model the cables. The stability functions for a frame member are modified to obtain a numerically stable solution. Various numerical examples are solved to illustrate the versatility and efficiency of the proposed finite element model. It is shown that the finite elements proposed in this study can be very useful for geometrically nonlinear analysis as well as free vibration analysis of three-dimensional cable-supported structures.

촉각시스템을 위한 그래픽 변형 알고리즘 (Graphic Deformation Algorithm for Haptic Interface System)

  • 강원찬;정원태;김영동;신석두
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.67-71
    • /
    • 2002
  • In this paper, we propose a new deformable model based on non-linear elasticity, anisotropic behavior and the finite element method and developed the high-speed controller for haptic control. The proposed controller is based on the PCI/FPGA technology, which can calculate the real position and transmit the force data to device rapidly, The haptic system is composed of 6DOF force display device, high-speed controller and HIR library for 3D graphic deformation algorithm & haptic rendering algorithm. The developed system will be used on constructing the dynamical virtual environment. we demonstrate the relevance of this approach for the real-time simulating deformations of elastic objects. To show the efficiency of our system, we designed simulation program of force-reflecting, As the result of the experiment, we found that the controller has much higher resolution than some other controllers.

  • PDF

Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation

  • Dai, H.L.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • 제19권4호
    • /
    • pp.441-457
    • /
    • 2005
  • An analytical method is presented to solve the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere subjected to thermal shock and electric excitation. Exact expressions for the transient responses of displacements, stresses, electric displacement and electric potentials in the piezoelectric hollow sphere are obtained by means of Hankel transform, Laplace transform, and inverse transforms. Using Hermite non-linear interpolation method solves Volterra integral equation of the second kind involved in the exact expression, which is caused by interaction between thermo-elastic field and thermo-electric field. Thus, an analytical solution for the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere is obtained. Finally, some numerical results are carried out, and may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.

DEPENDENCE OF RUBBER FRICTION UPON ITS ELASTIC CHARACTERISTICS

  • Nakamura, T.;Hanase, T.;Itoigawa, F.;Matsubara, T.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.187-188
    • /
    • 2002
  • Rubber has large differences in elastic characteristics from the other solid materials such as metals. Firstly, the rubber exhibits considerably large elastic compliance. Second is highly non-linear elasticity in which the compliance decreases with increase in strain. The main objective in this research is to reveal the dependence of rubber friction upon these elastic characteristics of the rubber in detail. A super elastic FEM analysis is carried out with using an elastic property of practical rubber. From the calculated result, it is cleared that the rubber makes large real contacting area easier than the metals.

  • PDF