• 제목/요약/키워드: non-linear concrete

검색결과 392건 처리시간 0.031초

Multilevel performance-based procedure applied to moderate seismic zones in Europe

  • Catalan, Ariel;Foti, Dora
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.57-76
    • /
    • 2015
  • The Performance-based Earthquake Engineering (PBEE) concept implies the definition of multiple target performance levels of damage which are expected to be achieved (or not exceeded), when the structure is subjected to earthquake ground motion of specified intensity. These levels are associates to different return period (RP) of earthquakes and structural behaviors quantified with adopted factors or indexes of control. In this work an 8-level PBEE study is carried out, finding different curves for control index or Engineering Demand Parameters (EDP) of levels that assess the structural behavior. The results and the curves for each index of control allow to deduce the structural behavior at an a priori unspecified RP. A general methodology is proposed that takes into account a possible optimization process in the PBEE field. Finally, an application to 8-level seismic performance assessment to structure in a Spanish seismic zone permits deducing that its behavior is deficient for high seismic levels (RP > 475 years). The application of the methodology to a low-to-moderate seismic zone case proves to be a good tool of structural seismic design, applying a more sophisticated although simple PBEE formulation.

Fundamental vibration frequency prediction of historical masonry bridges

  • Onat, Onur
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.155-162
    • /
    • 2019
  • It is very common to find an empirical formulation in an earthquake design code to calculate fundamental vibration period of a structural system. Fundamental vibration period or frequency is a key parameter to provide adequate information pertinent to dynamic characteristics and performance assessment of a structure. This parameter enables to assess seismic demand of a structure. It is possible to find an empirical formulation related to reinforced concrete structures, masonry towers and slender masonry structures. Calculated natural vibration frequencies suggested by empirical formulation in the literatures has not suits in a high accuracy to the case of rest of the historical masonry bridges due to different construction techniques and wide variety of material properties. For the listed reasons, estimation of fundamental frequency gets harder. This paper aims to present an empirical formulation through Mean Square Error study to find ambient vibration frequency of historical masonry bridges by using a non-linear regression model. For this purpose, a series of data collected from literature especially focused on the finite element models of historical masonry bridges modelled in a full scale to get first global natural frequency, unit weight and elasticity modulus of used dominant material based on homogenization approach, length, height and width of the masonry bridge and main span length were considered to predict natural vibration frequency. An empirical formulation is proposed with 81% accuracy. Also, this study draw attention that this accuracy decreases to 35%, if the modulus of elasticity and unit weight are ignored.

On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations

  • Hao-Xuan, Ding;Yi-Wen, Zhang;Gui-Lin, She
    • Computers and Concrete
    • /
    • 제30권6호
    • /
    • pp.433-443
    • /
    • 2022
  • In the current paper, the nonlinear resonance response of functionally graded graphene platelet reinforced (FG-GPLRC) beams by considering different boundary conditions is investigated using the Euler-Bernoulli beam theory. Four different graphene platelets (GPLs) distributions including UD and FG-O, FG-X, and FG-A are considered and the effective material parameters are calculated by Halpin-Tsai model. The nonlinear vibration equations are derived by Euler-Lagrange principle. Then the perturbation method is used to discretize the motion equations, and the loadings and displacement are all expanded, so as to obtain the first to third order perturbation equations, and then the asymptotic solution of the equations can be obtained. Then the nonlinear amplitude-frequency response is obtained with the help of the modified Lindstedt-Poincare method (Chen and Cheung 1996). Finally, the influences of the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions on the resonance problems are comprehensively studied. Results show that the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions have a significant effect on the nonlinear resonance response of FG-GPLRC beams.

Lubrication phenomenon in the stagnation point flow of Walters-B nanofluid

  • Muhammad Taj;Manzoor Ahmad;Mohamed A. Khadimallah;Saima Akram;Muzamal Hussain;Madeeha Tahir;Faisal Mehmood Butt;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • 제15권5호
    • /
    • pp.303-312
    • /
    • 2023
  • The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. For the solution, the governing partial differential equation is transformed into a series of non-linear ordinary differential equations. With the help of hybrid homotopy analysis method; that consists of both the homotopy analysis and shooting method these equations can be solved. The influence of different involved constraints on quantities of interest are sketched and discussed. The viscoelastic parameter, slip parameters on velocity component and temperature are analyzed. The velocity varies by increase in viscoelastic parameter in the presence of slip parameter. The slip on the surface has major effect and mask the effect of stagnation point for whole slip condition and throughout the surface velocity remained same. Matched the present solution with previously published data and observed good agreement. It can be seen that the slip effects dominates the effects of free stream and for the large values of viscoelastic parameter the temperature as well as the concentration profile both decreases.

Reinforcing effect of CFRP bar on concrete splitting behavior of headed stud shear connectors

  • Huawen Ye;Wenchao Wang;Ao Huang;Zhengyuan Wang
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.131-143
    • /
    • 2023
  • The CFRP bar was used to achieve more ductile and durable headed-stud shear connectors in composite components. Three series of push-out tests were firstly conducted, including specimens reinforced with pure steel fibers, steel and CFRP bars. The distributed stress was measured by the commercial PPP-BOTDA (Pre-Pump-Pulse Brillouin optical time domain analysis) optical fiber sensor with high spatial resolution. A series of numerical analyses using non-linear FE models were also made to study the shear force transfer mechanism and crack response based on the test results. Test results show that the CFRP bar increases the shear strength and stiffness of the large diameter headed-stud shear connection, and it has equivalent reinforcing effects on the stud shear capacity as the commonly used steel bar. The embedded CFRP bar can also largely improve the shear force transfer mechanism and decrease the tensile stress in the transverse direction. The parametric study shows that low content steel fibers could delay the crack initiation of slab around the large diameter stud, and the CFRP bar with normal elastic modulus and the standard reinforcement ratio has good resistance to splitting crack growth in headed stud shear connectors.

Behavior and modeling of RC beams strengthened with NSM-steel technique

  • Md. Akter Hosen;Khalid Ahmed Al Kaaf;A.B.M. Saiful Islam;Mohd Zamin Jumaat;Zaheer Abbas Kazmi
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.67-81
    • /
    • 2023
  • The reinforced concrete (RC) structures might need strengthening or upgradation due to adverse environmental conditions, design defects, modification requirements, and to prolong the expected lifespan. The RC beams have been efficiently strengthened using the near surface mounted (NSM) approach over the externally bonded reinforcing (EBR) system. In this study, the performance of RC beam elements strengthened with NSM-steel rebars was investigated using an experimental program and nonlinear finite element modeling (FEM). Nine medium-sized, rectangular cross-section RC beams total in number made up for the experimental evaluation. The beams strengthened with varying percentages of NSM reinforcement, and the number of grooves was assessed in four-point bending experiments up to failure. Based on the experimental evaluation, the load-displacement response, crack features, and failure modes of the strengthened beams were recorded and considered. According to the experimental findings, NSM steel greatly improved the flexural strength (up to about 84%) and stiffness of RC beams. The flexural response of the tested beams was simulated using a 3D non-linear finite element (FE) model. The findings of the experiments and the numerical analysis showed good agreement. The effect of the NSM groove and reinforcement on the structural response was then assessed parametrically.

초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (II) 구속 수축 특성 평가 및 구속도 예측 (Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (II) Evaluation of Restrained Shrinkage Characteristics and Prediction of Degree of Restraint)

  • 류두열;박정준;김성욱;윤영수
    • 대한토목학회논문집
    • /
    • 제32권5A호
    • /
    • pp.317-325
    • /
    • 2012
  • 본 연구에서는 초고성능 섬유보강 콘크리트(Ultra High Performance Fiber Reinforced Concrete, UHPFRC)의 구속 상태에서의 수축 거동을 평가하고자 국내 외에서 가장 보편적으로 사용되는 링-테스트(ring-test)를 이용하여 구속 수축 실험을 수행하였다. 특히, 다양한 구속도에서의 수축 거동을 평가하기 위하여 내부 강재 링의 두께와 내부 반경을 달리하여 실험을 수행하였으며, 자유 수축과 인장강도 실험을 수반하여 구속도 및 응력 이완, 수축 균열 가능성 등을 복합적으로 평가하였다. 실험 결과 내부 링의 두께가 증가할수록 내부 링의 평균 변형률과 잔류 인장응력은 감소하였으며, 반면에 구속도는 증가하는 경향을 보였다. 내부 링의 반경에 따라서는 변형률 및 잔류 인장응력, 구속도의 차이가 거의 없는 것으로 나타났다. 모든 시험체에서 잔류 인장응력이 인장강도에 비해 작은 것으로 나타났으며, 수축 균열은 발생하지 않았다. 지속적으로 작용하는 계면 구속 하중에 의해 탄성 수축 응력의 약 39~65%가 이완되는 것으로 나타났으며, 최대 이완 응력은 내부 링의 두께가 두꺼울수록 증가하는 것으로 나타났다. 마지막으로 본 연구에서는 비선형 회귀분석을 수행하여 재령에 따라 변하는 구속도를 예측하였으며, 실험 결과와 잘 일치하는 것으로 나타났다.

72m 초고강도 콘크리트 프리스트레스트 박스 거더의 수치 해석 (Numerical Simulation of 72m-Long Ultra High Performance Concrete Pre-Stressed Box Girder)

  • 비엣 징 마이;한상묵
    • 한국전산구조공학회논문집
    • /
    • 제35권2호
    • /
    • pp.73-82
    • /
    • 2022
  • 이 논문은 72m 초고강도 콘크리트 섬유보강 콘크리트 프리스트레스트 박스거더의 비선형 거동을 해석하는 3차원 해석방법을 제시하였다. UHPC재료의 비선형 거동을 나타내기 위해 콘크리트 손상소성(CDP)모델을 채택하였다. 제시된 응력-변형률 관계 곡선에 근거한 수치해석 모델은 50m UHPC 프리스트레스트 박스 거더 휨실험결과로 검증하였다. 검증된 해석모델을 사용하여 72m UHPC 프리스트레스트 박스거더의 휨거동을 파악하는데 적용하였다. 각 하중단계에 따른 하중 변위관계, 응력상태 및 연결부분 상세를 해석하였다. 하중-변위관계 곡선과 설계하중 및 극한하중 비교 결과는 UHPC 박스거더 휨거동을 해석하는 적절한 수단으로써 비선형 유한요소법의 적용성을 입증하고 있다.

Investigation of seismic response of long-span bridges under spatially varying ground motions

  • Aziz Hosseinnezhad;Amin Gholizad
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.401-416
    • /
    • 2024
  • Long-span structures, such as bridges, can experience different seismic excitations at the supports due to spatially variability of ground motion. Regarding current bridge designing codes, it is just EC 2008 that suggested some regulations to consider it and in the other codes almost ignored while based on some previous studies it is found that the effect of mentioned issue could not be neglected. The current study aimed to perform a comprehensive study about the effect of spatially varying ground motions on the dynamic response of a reinforced concrete bridge under asynchronous input motions considering soil-structure interactions. The correlated ground motions were generated by an introduced method that contains all spatially varying components, and imposed on the supports of the finite element model under different load scenarios. Then the obtained results from uniform and non-uniform excitations were compared to each other. In addition, the effect of soil-structure interactions involved and the corresponding results compared to the previous results. Also, to better understand the seismic response of the bridge, the responses caused by pseudo-static components decompose from the total response. Finally, an incremental dynamic analysis was performed to survey the non-linear behavior of the bridge under assumed load scenarios. The outcomes revealed that the local site condition plays an important role and strongly amplifies the responses. Furthermore, it was found that a combination of wave-passage and strong incoherency severely affected the responses of the structure. Moreover, it has been found that the pseudo-static component's contribution increase with increasing incoherent parameters. In addition, regarding the soil condition was considered for the studied bridge, it was found that a combination of spatially varying ground motions and soil-structure interactions effects could make a very destructive scenarios like, pounding and unseating.

경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석 (Fracture Simulation of UHPFRC Girder with the Interface Type Model)

  • 궈이홍;한상묵
    • 한국전산구조공학회논문집
    • /
    • 제23권1호
    • /
    • pp.81-94
    • /
    • 2010
  • 본 연구는 선형 상보법으로 초고강도 섬유보강 콘크리트 I형보의 파괴역학적 해석을 수치해석으로 수행하였다. 기존의 보통강도 콘크리트에 대한 유사 취성 파괴역학적 수치해석을 기반으로 초고강도 섬유보강 콘크리트 재료역학적 구성모델파괴 면에 인장경화 관계를 도입함으로써 초고강도 섬유보강 콘크리트 I형 거더 해석을 개선시켰다. 상수변형률 삼각형 요소에 꼭지점 또는 요소의 중앙점 절점을 배제하고 요소의 변에 절점을 배치한 결합된 삼각형 요소를 사용하였다. 인장영역에서는 경화/연화 파괴역학적 구성모델을, 전단영역에서는 연화 파괴역학적 구성모델을, 경계절점의 압축에 대해서는 연화파괴역학적 구성모델을 사용하여 파괴역학적 해석을 수행하였다. Non-holonomic rate 형태로 경로에 의존적인 경화연화거동을 LCP로 방정식을 구성하였으며, 그 해는 PATH를 사용해서 구하였다. Piece-wise 비탄성 항복-파괴면은 두 개의 압축 caps, 두 개의 Mohr-Coulomb 파괴면, 인장항복면과 인장파괴면 등으로 구성하였다. 초고강도 섬유보강 콘크리트 거더의 변형거동과 파괴 상태와 비교하여 이 수치해석 방법에 대한 유효성을 검증하였다.