• 제목/요약/키워드: non-joint

검색결과 1,279건 처리시간 0.028초

Study of tensile behavior of Y shape non-persistent joint using experimental test and numerical simulation

  • Sarfarazi, V.;Hajiloo, M.;Ghalam, E. Zarrin;Ebneabbasi, P.
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.565-576
    • /
    • 2020
  • Experimental and discrete element methods were used to investigate the effects of angle of Y shape non-persistent joint on the tensile behaviour of joint's bridge area under brazilian test. concrete samples with diameter of 100 mm and thikness of 40 mm were prepared. Within the specimen, two Y shape non-persistent notches were provided. The large notch lengths were 6 cm, 4 cm and 2 cm. the small notch lengths were 3 cm, 2 cm and 1 cm. The angle of larger notch related to horizontal axis was 0°, 30°, 60°, 90°. Totally, 12 different configuration systems were prepared for Y shape non-persistent joints. Also, 18 models with different Y shape non-persistent notch angle and notch length were prepared in numerical model. The large notch lengths were 6 cm, 4 cm and 2 cm. the small notch lengths were 3 cm, 2 cm and 1 cm. The angle of larger notch related to horizontal axis was 0, 30, 60, 90, 120 and 150. Tensile strength of model materil was 1 MPa. The axial load was applied to the model by rate of 0.02 mm/sec. This testing showed that the failure process was mostly governed by the Y shape non-persistent joint angle and joint length. The tensile strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the tensile behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint length and joint angle. The minimum tensile strength occurs when the angle of larger joint related to horizontal axis was 60°. Also, the maximum compressive strength occurs when the angle of larger joint related to horizontal axis was 90°. The tensile strength was decreased by increasing the notch length. The failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods.

A review paper about experimental investigations on failure behaviour of non-persistent joint

  • Shemirani, Alireza Bagher;Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Geomechanics and Engineering
    • /
    • 제13권4호
    • /
    • pp.535-570
    • /
    • 2017
  • There are only few cases where cause and location of failure of a rock structure are limited to a single discontinuity. Usually several discontinuities of limited size interact and eventually form a combined shear plane where failure takes place. So, besides the discontinuities, the regions between adjacent discontinuities, which consist of strong rock and are called material or rock bridges, are of utmost importance for the shear strength of the compound failure plane. Shear behaviour of persistent and non-persistent joint are different from each other. Shear strength of rock mass containing non-persistent joints is highly affected by mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Therefore investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental testing of non-persistent joint failure behaviour. Experimental results showed that the presence of rock bridges in not fully persistent natural discontinuity sets is a significant factor affecting the stability of rock structures. Compared with intact rocks, jointed rock masses are usually weaker, more deformable and highly anisotropic, depending upon the mechanical properties of each joint and the explicit joint positions. The joint spacing, joint persistency, number of rock joint, angle of rock joint, length of rock bridge, angle of rock bridge, normal load, scale effect and material mixture have important effect on the failure mechanism of a rock bridge.

Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression

  • Sarfarazi, V.;Abharian, S.;Ghalam, E. Zarrin
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.99-109
    • /
    • 2021
  • Experimental and discrete element methods were used to investigate the effects of echelon non-persistent joint on the failure behaviour of joint's bridge area under uniaxial compressive test. Concrete samples with dimension of 150 mm×100 mm×50 mm were prepared. Uniaxial compressive strength and tensile strength of concrete were 14 MPa and 1MPa, respectivly. Within the specimen, three echelon non-persistent notches were provided. These joints were distributed on the three diagonal plane. the angle of diagonal plane related to horizontal axis were 15°, 30° and 45°. The angle of joints related to diagonal plane were 30°, 45°, 60°. Totally, 9 different configuration systems were prepared for non-persistent joint. In these configurations, the length of joints were taken as 2 cm. Similar to those for joints configuration systems in the experimental tests, 9 models with different echelon non-persistent joint were prepared in numerical model. The axial load was applied to the model by rate of 0.05 mm/min. the results show that the failure process was mostly governed by both of the non-persistent joint angle and diagonal plane angle. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the shear behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. The strength of samples increase by increasing both of the joint angle and diagonal plane angle. The failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods.

Physical and Particle Flow Modeling of Shear Behavior of Non-Persistent Joints

  • Ghazvinian, A.;Sarfarazi, V.;Nejati, H.;Hadei, M.R.
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2011년도 추계 총회 및 창립 30주년 기념 심포지엄
    • /
    • pp.3-21
    • /
    • 2011
  • Laboratory experiments and numerical simulations using Particle Flow Code (PFC2D) were performed to study the effects of joint separation and joint overlapping on the full failure behavior of rock bridges under direct shear loading. Through numerical direct shear tests, the failure process is visually observed and the failure patterns are achieved with reasonable conformity with the experimental results. The simulation results clearly showed that cracks developed during the test were predominantly tension cracks. It was deduced that the failure pattern was mostly influenced by both of the joint separation and joint overlapping while the shear strength is closely related to the failure pattern and its failure mechanism. The studies revealed that shear strength of rock bridges are increased with increasing in the joint separation. Also, it was observed that for a fixed cross sectional area of rock bridges, shear strength of overlapped joints are less than the shear strength of non-overlapped joints.

  • PDF

초전도 관내연선도체 접합부에서의 전류 불균일에 대한 수치적 분석 (Numerical analysis about current non-uniformity in superconducting CICC (cable-in-conduit conductor) joint)

  • 이상일;정상권;최성민;박갑래
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권3호
    • /
    • pp.41-45
    • /
    • 2007
  • This paper presents transport current non-uniformity in a joint for superconducting multistage cable-in-conduit conductor (CICC) and relaxation in the CICC. The joint is considered to have a current loop linked to an external magnetic field so that it becomes an emf voltage source. It is numerically analyzed using an electrical transmission line model. The inductive current in a resistive joint is compared to that of a non-resistive joint when the ramping field is applied vertically to the joints. Regarding the parameter values of the model. a full scale $Nb_3Sn$ CICC and a strand-to-strand (STS) joint for the toroidal field magnet of the KSTAR (Korea Superconducting Tokamak Advanced Research) device are referenced to. It is found that the resistive joint prevents the current from rising too much and enhances decaying the current when the ramping stops. The 'flattop' current is found to be proportional to the ramp rate of the field (dB/dt). The relaxation length, which is defined as the length within which the maximum induced current falls by 1/e. is found to saturate within 0.27m.

Behavior of F shape non-persistent joint under experimental and numerical uniaxial compression test

  • Sarfarazi, Vahab;Asgari, Kaveh;Zarei, Meisam;Ghalam, Erfan Zarrin
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.199-213
    • /
    • 2022
  • Experimental and discrete element approaches were used to examine the effects of F shape non-persistent joints on the failure behaviour of concrete under uniaxial compressive test. concrete specimens with dimensions of 200 cm×200 cm×50 cm were provided. Within the specimen, F shape non-persistent joint consisting three joints were provided. The large joint length was 6 cm, and the length of two small joints were 2 cm. Vertical distance between two small joints change from 1.5 cm to 4.5 cm with increment of 1.5 cm. In constant joint lengths, the angle of large joint change from 0° to 90° with increments of 30°. Totally 12 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, numerical simulation (Particle flow code in two dimension) were performed on the models containing F shape non-persistent joint. Distance between small joints and joint angles were similar to experimental one. the results indicated that the failure process was mostly governed by both of the Distance between small joints and joint angles. The axial loading rate on the model was 0.05 mm/min. The compressive strengths of the samples were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. In the first, there were only a few acoustic emission (AE) hits in the initial stage of loading, and then AE hits rapidly grow before the applied stress reached its peak. Furthermore, a large number of AE hits accompanied every stress drop. Finally, the failure pattern and failure strength are similar in both approaches i.e., the experimental testing and the numerical simulation approaches.

태권도 선수와 일반인의 등척성 무릎신전 토크-각도 관계 특성 비교 분석 (Comparison of Isometric Knee Extension Torque-Angle Relationship between Taekwondo Athletes and Normal Adults)

  • 조계훈;오정훈;이해동
    • 한국운동역학회지
    • /
    • 제25권3호
    • /
    • pp.275-281
    • /
    • 2015
  • Objective : In order for Taekwondo athletes to perform destructive kicking performance, they are expected to have Taekwondo-specific muscle properties such as high muscle strength and power. The purpose of this study was to investigate the joint angle-dependent force-producing property of Taekwondo athletes' knee extensor muscles, which is one of the primary muscle groups involved in kicking performance. Method : Ten Taekwondo male athletes (age: $19.9{\pm}0.7yrs$, height: $180.6{\pm}6.2cm$, body mass: $75.9{\pm}8.9kg$, career: $9.2{\pm}2.9yrs$.) and 10 healthy male non-athletes (age: $26.3{\pm}2.6yrs$, height: $174.2{\pm}4.8cm$, body mass: $72.8{\pm}7.7kg$) participated in this study. Subjects performed maximum isometric knee extension at knee joint angles of $40^{\circ}$, $60^{\circ}$, $80^{\circ}$, and $100^{\circ}$ (the full knee extension was set to $0^{\circ}$) with the hip joint angles of $0^{\circ}$ and $80^{\circ}$ (the full extension was set to $0^{\circ}$). During the contractions, knee extension torque using an isokinetic dynamometer simultaneously with muscle activities of the rectus femoris (RF), and the vastus lateralis (VL) and vastus medialis (VM) using surface electromyography were recorded. Based on the torque values at systematically different knee-hip joint angles, the joint torque-angle relationships were established and then the optimal joint angle for the knee extensor was estimated. Results : The results of this study showed that the isometric knee extension torque values were greater for the Taekwondo athletes compared with the non-athlete group at all hip-knee joint angle combinations (p<.05). When the hip joint was set at $80^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($313.61{\pm}36.79Nm$ and $221.43{\pm}35.92Nm$, respectively; p<.05) but the estimated optimum knee joint angles were similar ($62.33{\pm}5.71^{\circ}$ and $62.30{\pm}4.67^{\circ}$ for the Taekwondo athletes and non-athlete group, respectively). When the hip joint was set at $0^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($296.29{\pm}45.13Nm$ and $199.58{\pm}25.23Nm$, respectively; p<.05) and the estimated optimum knee joint angle was larger for the Taekwondo athletes compared with the non-athlete group ($78.47{\pm}5.14^{\circ}$ and $67.54{\pm}5.77^{\circ}$, respectively; p<.05). Conclusion : The results of this study suggests that, compared with non-athletes, Taekwondo athletes have stronger knee extensor strength at all hip-knee joint angle combinations as well as longer optimum muscle length, which might be optimized for the event-specific required performance through prolonged training period.

Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches

  • Haeri, Hadi;Sarfarazi, V.;Zhu, Zheming;Hokmabadi, N. Nohekhan;Moshrefifar, MR.;Hedayat, A.
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.221-230
    • /
    • 2019
  • In this paper, shear behavior of non-persistent joint surrounded in concrete and gypsum layers has been investigated using experimental test and numerical simulation. Two types of mixture were prepared for this study. The first type consists of water and gypsum that were mixed with a ratio of water/gypsum of 0.6. The second type of mixture, water, sand and cement were mixed with a ratio of 27%, 33% and 40% by weight. Shear behavior of a non-persistent joint embedded in these specimens is studied. Physical models consisting of two edge concrete layers with dimensions of 160 mm by 130 mm by 60 mm and one internal gypsum layer with the dimension of 16 mm by 13 mm by 6 mm were made. Two horizontal edge joints were embedded in concrete beams and one angled joint was created in gypsum layer. Several analyses with joints with angles of $0^{\circ}$, $30^{\circ}$, and $60^{\circ}$ degree were conducted. The central fault places in 3 different positions. Along the edge joints, 1.5 cm vertically far from the edge joint face and 3 cm vertically far from the edge joint face. All samples were tested in compression using a universal loading machine and the shear load was induced because of the specimen geometry. Concurrent with the experiments, the extended finite element method (XFEM) was employed to analyze the fracture processes occurring in a non-persistent joint embedded in concrete and gypsum layers using Abaqus, a finite element software platform. The failure pattern of non-persistent cracks (faults) was found to be affected mostly by the central crack and its configuration and the shear strength was found to be related to the failure pattern. Comparison between experimental and corresponding numerical results showed a great agreement. XFEM was found as a capable tool for investigating the fracturing mechanism of rock specimens with non-persistent joint.

무용접 후렉시블 조인트 개발에 관한 기초연구 (A Fundamental Study on Development of Non-Welded Flexible Joint)

  • 오철훈;박환철;정지현
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.57-62
    • /
    • 2017
  • The flexible joint with bellows and flange is made by welding bellows and flange in general. The welded parts cause a crack or demage in the flexible joint due to continuous vibration and fatigue limit. This paper is concerned with development of flexible joint with non-welded, free rotation of flange and non-packing to improve fatigue failure condition between bellows and flange. The support box and support plate that are components of press part are designed to compress fore-end of bellows only without demage of bellows. The production system of flexible joint is designed with piston attached on the compression side. The simulation is performed using Deform 3D software. As the result of simulation, the shape of compressed bellows was most proper in the compression power of $157kg{\cdot}f$ and any deformation has not occurred at a part besides fore-end. The result show that the production possibility of the designed flexible joint.

A review of experimental and numerical investigations about crack propagation

  • Sarfarazi, Vahab;Haeri, Hadi
    • Computers and Concrete
    • /
    • 제18권2호
    • /
    • pp.235-266
    • /
    • 2016
  • A rock mass containing non-persistent joints can only fail if the joints propagate and coalesce through an intact rock bridge. Shear strength of rock mass containing non-persistent joints is highly affected by the both, mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Existence of rock joints and rock bridges are the most important factors complicating mechanical responses of a rock mass to stress loading. The joint-bridge interaction and bridge failure dominates mechanical behavior of jointed rock masses and the stability of rock excavations. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental and numerical modelling of a non-persistent joint failure behaviour. Such investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. This paper is divided into two sections. In the first part, experimental investigations have been represented followed by a summarized numerical modelling. Experimental results showed failure mechanism of a rock bridge under different loading conditions. Also effects of the number of non-persistent joints, angle between joint and a rock bridge, lengths of the rock bridge and the joint were investigated on the rock bridge failure behaviour. Numerical simulation results are used to validate experimental outputs.