• Title/Summary/Keyword: non-isotropic Schr$\"{o}$dinger equations

Search Result 1, Processing Time 0.02 seconds

Global Small Solutions of the Cauchy Problem for Nonisotropic Schrödinger Equations

  • Zhao, Xiangqing;Cui, Shangbin
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.101-108
    • /
    • 2008
  • In this paper we study the existence of global small solutions of the Cauchy problem for the non-isotropically perturbed nonlinear Schr$\"{o}$dinger equation: $iu_t\;+\;{\Delta}u\;+\;{\mid}u{\mid}^{\alpha}u\;+\;a{\Sigma}_i^d\;u_{x_ix_ix_ix_i}$ = 0, where a is real constant, 1 $\leq$ d < n is a integer is a positive constant, and x = $(x_1,x_2,\cdots,x_n)\;\in\;R^n$. For some admissible ${\alpha}$ we show the existence of global(almost global) solutions and we calculate the regularity of those solutions.