• Title/Summary/Keyword: non-isolated boost charger

Search Result 7, Processing Time 0.022 seconds

Non-isolated Boost Charger for the Li-Ion Batteries Suitable for Fuel Cell Powered Laptop Computers

  • Sang, Nguyen Van;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • The conventional non-isolated boost converter has some drawbacks such as poor dynamic performance and a discontinuous output current, which make it unsuitable for battery charging applications. In spite of its compactness and lightness, it is not preferred as a charger of portable electronic devices. In this paper, a non-isolated boost converter topology for Li-ion batteries suitable for fuel cell powered laptop computers is proposed and analyzed. The proposed converter has an additional inductor at the output to make a continuous output current. This feature makes it suitable for charger applications by eliminating the disadvantages of the conventional non-isolated boost converter mentioned above. A prototype of the proposed converter is built for the Li-ion battery charger of a laptop computer to prove the validity and advantages of the proposed topology.

A Non-Isolated Boost Charger for the Li-Ion Battery Suitable for the Fuel Cell Powered Laptop Computer

  • Nguyen, Van Sang;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.177-178
    • /
    • 2012
  • In spite of its compactness and lightness, conventioan boost converter is not preferred for the charge applications. In this paper, a non-isolated boost converter topology for the Li-Ion battery suitable for fuel cell powered laptop computer is proposed and analyzed. The proposed converter has an additional inductor at the output to reduce the output ripple current and voltage. This feature makes it suitable for the charger application by eliminating the disadvantages of the conventional non-isolated boost converter mentioned above.

  • PDF

Design of the Non-Isolated Fuel Cell Boost Charger for the Lithium Polymer Battery with Low Output Ripple (낮은 출력 리플을 갖는 연료전지를 이용한 리튬폴리머 전지용 비절연형 승압 충전기의 설계)

  • Tran, Van Long;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.182-183
    • /
    • 2013
  • In the design of the fuel cell charger, it is important to find out the suitable topology and to design the converter to guarantee the performance of the fuel cell as well as the battery. Most of the chargers developed so far have used step-down converters. However, since the small fuel cell stack can only generate a low voltage, it is required to use the step-up converter to charge the battery. In this paper, a modified non-isolated boost charger topology for the Proton Exchange Membrane Fuel Cell (PEMFC) is proposed to meet the strict ripple requirements for the battery charge and its control method by using PI controller is detailed. The feasibility of the proposed topology and its control method is then verified by the experiments.

  • PDF

6.6 kW On-Vehicle Charger with a Hybrid Si IGBTs and SiC SBDs Based Booster Power Module

  • Han, Timothy Junghee;Preston, Jared;Ouwerkerk, David
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.584-591
    • /
    • 2013
  • In this paper, a hybrid booster power module with Si IGBT and Silicon Carbide (SiC) Schottky Barrier Diode (SBDs) is presented. The switching characteristics of the hybrid booster module are compared with commercial Silicon IGBT/Si PIN diode based modules. We applied the booster power module into a non-isolated on board vehicle charger with a simple buck-booster topology. The performances of the on-vehicle charger are analyzed and measured with different power modules. The test data is measured in the same system, at the same points of operation, using the conventional Si and hybrid Si/SiC power modules. The measured power conversion efficiency of the proposed on-vehicle charger is 96.4 % with the SiC SBD based hybrid booster module. The conversion efficiency gain of 1.4 % is realizable by replacing the Si-based booster module with the Si IGBT/SiC SBD hybrid boost module in the 6.6 kW on-vehicle chargers.

Analysis on the Output Ripple of the Non-isolated Boost Charger for the Li-ion Battery

  • Nguyen, Van Sang;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.46-47
    • /
    • 2012
  • In the design of the battery charger it is important to limit the ripple current and voltage according to the manufacturer's recommendation for the reliable service and the extended life of the battery. However, it is often overlooked that these ripple components can cause internal heating of the battery, thereby reducing its service life. Thus the care must be taken in the design of the switching converter for the charge application through the accurate estimation of the output ripple values. In this research analysis on the output ripple of the dc-dc converter is detailed to provide a guideline for the design of the battery charger.

  • PDF

The development of high efficiency isolated converter for vehicle charger (차량 충전용 고효율 절연형 컨버터 개발)

  • Park, Minjun;Jin, Hoshang;Lee, Gunhee;Hwang, Kwangkyu;Kim, Woosup;Lee, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.101-102
    • /
    • 2015
  • This paper is about the suggestion for the development in the commercialization for 3.6kW Class On-Board charger. It is suggesting non-insulation AC-DC Boost Power Factor correction circuit and insulation DC-DC resonant Converter for circuit design. In addition, Input AC voltage in the power supply is DCM control which can be designed to decrease the inductance for the inductor size to be reduced. DCM controls and Interleaved PFC can be designed to decrease the inductor size increasing the power conversions. Also, using the insulation DC-DC resonant converter, the efficiency can be increased. This system is verified using prototype hardware.

  • PDF

Development of Non-Isolated On-Board Battery Charger for Electric Vehicles with Novel Control Algorithm (전기자동차용 비절연형 탑재형 충전기 및 충전 효율 향상을 위한 제어 알고리즘 개발)

  • Kim, Dong-Hee;Kim, Yun-Sung;Woo, Dong-Gyun;Oh, Chang-Yeol;Sung, Won-Yong;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.93-94
    • /
    • 2012
  • 본 논문에서는 효율 향상과 부피저감을 위한 전기자동차용 3.7kW급 비절연형 탑재형 충전기를 소개하고, 강압영역에서의 성능 개선을 위한 알고리즘을 제안한다. 제안한 충전기 토폴로지는 Cascaded Buck-Boost 컨버터로 두개의 Pole로 구성되어 있으며, 강압영역에서 제어는 기존의 제어 방식과 다르게 두 개의 Pole을 동시에 제어하지 않고 각각을 제어하여 인덕터의 전류 리플을 저감하여 충전효율을 증가 시킬 수 있다. 제안한 시스템 및 알고리즘은 실험을 통해 검증한다.

  • PDF