• Title/Summary/Keyword: non-invasive detection

Search Result 144, Processing Time 0.026 seconds

Counterfeit Detection Using Characterization of Safety Feature on Banknote with Full-field Optical Coherence Tomography

  • Choi, Woo-June;Min, Gi-Hyeon;Lee, Byeong-Ha;Eom, Jong-Hyun;Kim, Ju-Wan
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.316-320
    • /
    • 2010
  • We report an application of full-field optical coherence tomography (FF-OCT) for identifying counterfeit bank notes. The depth-resolved imaging capability of FF-OCT was used for tomographic identification of superficially-identical objects. By retrieving the internal structures of the security feature (cash hologram) of an original banknote, we could demonstrate the feasibility of FF-OCT to identify counterfeit money. The FF-OCT images showed that the hologram consisted of micron scale multi-coated layers including an air gap. Therefore, it is expected that FF-OCT has potential as a new non-invasive tool to discern imitation of currency, and it would find applications in a wide field of counterfeit sciences.

Stress Detection and Classification of Laying Hens by Sound Analysis

  • Lee, Jonguk;Noh, Byeongjoon;Jang, Suin;Park, Daihee;Chung, Yongwha;Chang, Hong-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.592-598
    • /
    • 2015
  • Stress adversely affects the wellbeing of commercial chickens, and comes with an economic cost to the industry that cannot be ignored. In this paper, we first develop an inexpensive and non-invasive, automatic online-monitoring prototype that uses sound data to notify producers of a stressful situation in a commercial poultry facility. The proposed system is structured hierarchically with three binary-classifier support vector machines. First, it selects an optimal acoustic feature subset from the sound emitted by the laying hens. The detection and classification module detects the stress from changes in the sound and classifies it into subsidiary sound types, such as physical stress from changes in temperature, and mental stress from fear. Finally, an experimental evaluation was performed using real sound data from an audio-surveillance system. The accuracy in detecting stress approached 96.2%, and the classification model was validated, confirming that the average classification accuracy was 96.7%, and that its recall and precision measures were satisfactory.

Development of Detection and Analysis System for Electrogastrographic Signal (위전도신호의 측정 및 분석시스템 개발)

  • 한완택;김인영
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.261-268
    • /
    • 1998
  • Electrogastrography(EGG), the cutaneous recording of the myoelectrical activity of the stomach using surface electrodes, is a non-invasive technique to detect gastric motility disorder, We developed a detection and analysis system for the EGG signal, which consists of hardware(bio-amplifier, filter) and softwere(user interface, analysis algorithm, patient database). The EGG signal was amplified and filtered by 3 channel bio-amplifiers, and simultaneously digitized and stored on IBM PC with a sampling frequency of 16 Hz. The stored EGG signal was analyzed using developed algorithm to extract clinically useful information from the signal. The developed system has tested through animal experiments, and is under clinical evaluation.

  • PDF

A Novel Whale Optimized TGV-FCMS Segmentation with Modified LSTM Classification for Endometrium Cancer Prediction

  • T. Satya Kiranmai;P.V.Lakshmi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.53-64
    • /
    • 2023
  • Early detection of endometrial carcinoma in uterus is essential for effective treatment. Endometrial carcinoma is the worst kind of endometrium cancer among the others since it is considerably more likely to affect the additional parts of the body if not detected and treated early. Non-invasive medical computer vision, also known as medical image processing, is becoming increasingly essential in the clinical diagnosis of various diseases. Such techniques provide a tool for automatic image processing, allowing for an accurate and timely assessment of the lesion. One of the most difficult aspects of developing an effective automatic categorization system is the absence of huge datasets. Using image processing and deep learning, this article presented an artificial endometrium cancer diagnosis system. The processes in this study include gathering a dermoscopy images from the database, preprocessing, segmentation using hybrid Fuzzy C-Means (FCM) and optimizing the weights using the Whale Optimization Algorithm (WOA). The characteristics of the damaged endometrium cells are retrieved using the feature extraction approach after the Magnetic Resonance pictures have been segmented. The collected characteristics are classified using a deep learning-based methodology called Long Short-Term Memory (LSTM) and Bi-directional LSTM classifiers. After using the publicly accessible data set, suggested classifiers obtain an accuracy of 97% and segmentation accuracy of 93%.

Combustion Diagnostics Method Using Diode Laser Absorption Spectroscopy (다이오드 레이저를 이용한 연소진단기법)

  • Cha, Hak-Joo;Kim, Min-Soo;Shin, Myung-Chul;Kim, Se-Won;Kim, Hyuck-Joo;Han, Jae-Won
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.75-83
    • /
    • 2003
  • Diode laser absorption system is advantageous of their non-invasive nature, fast response time, high sensitivity and real-time measurement capability. Furthermore, recent advances in room-temperature, near-IR and visible diode laser sources for telecommunication, optical data storage applications are enabling combustion diagnostics system based on diode laser absorption spectroscopy. So, combined with fiber-optics and high sensitive detection strategies, compact and portable sensor system are now appearing for a variety of applications. The objective of this research is to take advantage of distributed feed-back diode laser and develope new gas sensing system. It experimentally found out that the wavelength, power characteristics as a function of injection current and temperature. In addition to direct absorption and wavelength modulation spectroscopy have been demonstrated in these experiments and have a bright prospect to this diode laser system.

  • PDF

A Study on the Blink Pattern Extraction of a Driver in Drowsy State (졸음감지를 위한 깜박임 패턴 검출에 관한 연구)

  • Kim, B.J.;Park, S.S.;Oh, S.G.;Kim, N.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.322-325
    • /
    • 1997
  • In this study, we propose a non-invasive method to detect the drowsiness of a driver. The computer vision technology was used to extract an eye, track eyelids and measure the parameters related to the blink. We examined the blink patterns of a driver in drowsy state. For the evaluation of our image processing algorithm, the blink patterns were compared with the measured EOG signals. The result showed that our algorithm might be available in detection of drowsiness.

  • PDF

Myocardial Perfusion PET (심근관류 PET)

  • Cho, Ihn-Ho;Kong, Eun-Jung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.207-214
    • /
    • 2009
  • Positron emission tomogrpahy (PET) represents the most advanced scintigraphic imaging technology. With the increase in availability of PET, the clinical use of PET has grown in medical fields. This can be employed for cardiovascular research as well as for clinical applications in patients with various cardiovascular disease. PET allows non-invasive functional assessment of myocardial perfusion, substrate metabolism and cardiac innervation and receptors as well as gene expression in vivo. PET is regarded as the gold standard for the detection of myocardial viability, and it is the only method available for the quantitative assessment of myocardial blood flow. This review focuses on the clinical applications of myocardial perfusion PET in coronary artery disease.

Magnetic and Thermal Evaluation of a Magnetic Tunneling Junction Current Sensor Package

  • Rhod, Eduardo;Peter, Celso;Hasenkamp, Willyan;Grion, Agner
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.49-55
    • /
    • 2016
  • Nowadays there are magnetic sensors in a wide variety of equipment such as computers, cars, airplanes, medical and industrial instruments. In many of these applications the magnetic sensors offer safe and non-invasive means of detection and are more reliable than other technologies. The electric current in a conductor generates a magnetic field detected by this type of sensor. This work aims to define a package dedicated to an electrical current sensor using a MTJ (Magnetic Tunnel Junction) as a sensing device. Four different proposals of packaging, three variations of the chip on board (CoB) package type and one variation of the thin small outline package (TSOP) were analyzed by COMSOL modeling software by simulating a brad range of current injection. The results obtained from the thermal and magnetic analysis has proven to be very important for package improvements, specially for heat dissipation performance.

Future of Autofluorescence Bronchoscopy (형광기관지경의 미래)

  • Jang, Tae-Won
    • Korean Journal of Bronchoesophagology
    • /
    • v.15 no.2
    • /
    • pp.30-35
    • /
    • 2009
  • Lung cancer could be developed through a series of morphological changes from dysplasia to carcinoma in situ and then invasive cancer. However, precancerous lesions are generally a few cell layers thick and are detected only by chance. Autofluorescence bronchoscopy(AFB) is one of the newly developed diagnostic tools to detect the pre-cancerous lesions m the bronchial tissue. Several studies have shown that AFB improved the rate of detection of cancer and dysplastic lesions of the airway, especially those in intraepithelial stage. However, there were high rates of false positive with AFB, and it is also important to develop non-biopsy methods because of lack of accurate information of variable course of preneoplastic lesions regarding progression. So, many other technologies were developed, such as narrow band imaging(NBI), endobronchoscopic ultrasound, optical coherence tomography, and confocal fluorescence microendoscopy. Among the new machines, NBI is a new optical technology that can clearly visualize the microvascular structure m the mucosal layer. NBI seems to increase specificity without compromising sensitivity. In the future such techniques would make it possible to precisely study in detail the natural history of the premalignant epithelium.

  • PDF

An Improvement of Signal Processing of Pulse Oximeter Using Modulization (모듈화를 이용한 펄스 옥시메터의 신호처리 개선)

  • 이한욱;이주원;이종희;조원래;장두봉;김영일;이건기
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.117-120
    • /
    • 2000
  • Pulse oximetry is a well established non-invasive optical technique for monitoring the SpO$_2$ during anaesthesia, recovery and intensive care. Pulse oximeters determine the oxygen saturation level of blood by measuring the light absorption of arterial blood. The sensors consists of red and infrared light sources and photodetectors. In the measurement of the hemoglobin oxygen saturation, conventional method has required the technique of filtering of remove the noise, and of complex signal processing algorithm. So much time have required to signal processing. In this research, we separate AC signal and DC signal in the stage of signal detection. We filter the noise from each signal and convert A/D. We obtain the SpO$_2$ using the DSP algorithm.

  • PDF