• Title/Summary/Keyword: non-identical fading channels

Search Result 8, Processing Time 0.02 seconds

Exact Outage Probability Analysis of Proactive Relay Selection in Cognitive Radio Networks with MRC Receivers

  • Ho-Van, Khuong
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.288-298
    • /
    • 2016
  • Proactive relay selection in cognitive radio networks has recently received considerable attention. However, its outage probability analysis is limited to partially-identical fading distributions, uncorrelation among received signal-to-noise ratios (SNRs), and no direct channel. This paper completes this literature deficiency by generalizing the existing analysis for non-identical fading distributions, correlation among received SNRs, and with direct channel. Numerous results demonstrate that relay selection with a direct channel achieves a higher diversity order and superior performance than that without a direct channel at virtually no cost of power and bandwidth. Further, proactive relay selection suffers an error floor at either a large maximum transmit power or large maximum interference power; however, the error floor level can be significantly remedied with an increase in the number of relays.

A Method Using Selection-Combining To Enhance Spectrum Sensing Performance (스펙트럼 센싱 성능 향상을 위한 선택적 결합 사용 방법)

  • Kong, Hyung-Yun;Tran, Truc Thanh
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.71-76
    • /
    • 2013
  • This paper considers an approach of secondary user selection method in cooperative spectrum sensing, which two users with the best SNR in sensing channel and in reporting channel, respectively, are selected to cooperate with each other in the spectrum sensing. The sensing results reported by two users are then combined to detect PU signal operation. A comparison between this proposed method with conventional selection technique in which only the user having the best sensing channel SNR is selected shows that the proposed method outperforms. We make an assumption that sensing channels experience identical, independent distributed (i.i.d) Rayleigh fading and the reporting channels are invariant and non-identical. Simulation results are derived for demonstration.

Outage Probability of Decode-and-Forward Relaying Systems with Efficient Partial Relay Selection in Nakagami Fading Channels

  • Lee, Sangjun;Lee, Howon;Choi, Hyun-Ho;Lee, In-Ho
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.22-30
    • /
    • 2014
  • Recently, efficient partial relay selection (e-PRS) was proposed as an enhanced version of PRS. In comparing e-PRS, PRS, and the best relay selection (BRS), there is a tradeoff between complexity and performance; that is, the complexity for PRS, e-PRS, and BRS is low to high, respectively, but vice versa for performance. In this paper, we study the outage probability for e-PRS in decode-and-forward (DF) relaying systems over non-identical Nakagami-m fading channels, where the fading parameter m is an integer. In particular, we provide closed-form expressions of the exact outage probability and asymptotic outage probability for e-PRS in DF relaying systems. Numerical results show that e-PRS achieves similar outage performance to that of BRS for a low or medium signal-to-noise ratio, a high fading parameter, a small number of relays, and a large difference between the average channel powers for the first and the second hops.

An Analysis of Combining Methods in Cooperative Spectrum Sensing over Rayleigh Fading Channel

  • Truc, Tran Thanh;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.190-198
    • /
    • 2010
  • This paper evaluates the performance of two methods of spectrum sensing: the linear combining method and the selection combining method which is based on maximum SNR of sensing channel. We proposed a rule for global detection for the purpose of combating hidden terminal problems in spectrum sensing. Our analysis considers a situation when sensing channels experience the non-identically, independently distributed(n.i.d) Rayleigh fading. The average probabilities of global detection in these methods are derived and compared. In the scope of this paper, the reporting channels are assumed to be the AWGN channel with invariant and identical gain during the system's operation.

Spectrum Sharing-Based Multi-Hop Decode-and-Forward Relay Networks under Interference Constraints: Performance Analysis and Relay Position Optimization

  • Bao, Vo Nguyen Quoc;Thanh, Tran Thien;Nguyen, Tuan Duc;Vu, Thanh Dinh
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.266-275
    • /
    • 2013
  • The exact closed-form expressions for outage probability and bit error rate of spectrum sharing-based multi-hop decode-and-forward (DF) relay networks in non-identical Rayleigh fading channels are derived. We also provide the approximate closed-form expression for the system ergodic capacity. Utilizing these tractable analytical formulas, we can study the impact of key network parameters on the performance of cognitive multi-hop relay networks under interference constraints. Using a linear network model, we derive an optimum relay position scheme by numerically solving an optimization problem of balancing average signal-to-noise ratio (SNR) of each hop. The numerical results show that the optimal scheme leads to SNR performance gains of more than 1 dB. All the analytical expressions are verified by Monte-Carlo simulations confirming the advantage of multihop DF relaying networks in cognitive environments.

Performance Optimization of Two-Way AF Relaying in Asymmetric Fading Channels

  • Qi, Yanyan;Wang, Xiaoxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4432-4450
    • /
    • 2014
  • It is widely observed that in practical wireless cooperative communication systems, different links may experience different fading characteristics. In this paper, we investigate into the outage probability and channel capacity of two-way amplify-and-forward (TWAF) relaying systems operating over a mixed asymmetric Rician and Rayleigh fading scenario, with different amplification policies (AP) adopted at the relay, respectively. As TWAF relay network carries concurrent traffics towards two opposite directions, both end-to-end and overall performance metrics were considered. In detail, both uniform exact expressions and simplified asymptotic expressions for the end-to-end outage probability (OP) were presented, based on which the system overall OP was studied under the condition of the two source nodes having non-identical traffic requirements. Furthermore, exact expressions for tight lower bounds as well as high SNR approximations of channel capacity of the considered scenario were presented. For both OP and channel capacity, with different APs, effective power allocation (PA) schemes under different constraints were given to optimize the system performance. Extensive simulations were carried out to verify the analytical results and to demonstrate the impact of channel asymmetry on the system performance.

Effect of Mutual Interference and Channel Estimation Error on Outage Performance of Reactive Relay Selection in Unlicensed Systems

  • Ho-Van, Khuong
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.362-369
    • /
    • 2015
  • This study addresses the effects of channel estimation error and mutual interference between licensed and unlicensed systems on outage performance of reactive relay selection in unlicensed systems over independent non-identical (i.n.i) Rayleigh fading channels and under both the maximum transmit power constraint and primary outage constraint. Toward this end, power allocation for unlicensed users is first recommended to satisfy both constraints and account for channel estimation error and mutual interference. Then, we derive an exact closed-form outage probability representation for unlicensed systems to quickly evaluate this effect in key operation parameters. Various results corroborate the derived expressions and provide useful insights into system performance.

Resource Allocation Scheme Using Small Feedback Overhead in Downlink Non-Orthogonal Multiple Access Systems (하향링크 비직교 다중 접속 시스템에서 적은 피드백 오버헤드를 이용하는 자원 할당 기법)

  • Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1040-1046
    • /
    • 2022
  • In this paper, we consider a system with massive user equipments (UEs) in a cell and assume path loss and Rayleigh fading channels between the base station (BS) and UEs. In addition, it is assumed that the system bandwidth consists of multiple identical frequency subchannels. Under such assumptions, we propose a channel state information (CSI) feedback scheme and a resource allocation scheme for non-orthogonal multiple access (NOMA) transmission in order to reduce the feedback overhead of CSI generated by massive UEs and to reduce the complexity of resource allocation. In particular, for the proposed schemes, we analyze the sum data rate achievable by massive UEs in a cell and the outage probability with which the UEs in a cell do not meet the target data rate. Through the simulation results, we show that the proposed schemes can provide the superior outage probability, although it degrades the average sum data rate.