• 제목/요약/키워드: non-histone

검색결과 55건 처리시간 0.026초

인체폐암세포 A549의 세포주기 조절인자에 미치는 histone deacetylase inhibitor trichostatin A의 영향 (Modulacon of Cell Cycle Control by Histone Deacetylase Inhibitor Trichostatin A in A549 Human Non-small Cell Lung Cancer Cells)

  • 황지원;김영민;홍수현;최병태;이원호;최영현
    • 생명과학회지
    • /
    • 제15권5호
    • /
    • pp.726-733
    • /
    • 2005
  • Histone deacetylase (HDAC) 억제제가 새로운 항암치료제 후보물질로서 유용성이 높은 것으로 평가되지만, 아직까지 인체폐암세포에 관한 연구는 상대적으로 미미한 실정이다. 따라서 본 연구에서는 폐암세포에 미치는 HDAC 억제제의 항암작용 기전을 조사하기 위하여 A549 인체폐암세포주를 대상으로 암세포의 증식에 미치는 대표적인 HDAC 억제제인 tichostatin A (TSA)에 의한 영향을 세포주기 조절관련인자 중심으로 조사하였다. TSA의 처리에 의하여 A549 폐암세포의 증식은 처리 농도 의존적으로 억제되었으며, 심한 형태적 변형을 동반하였다. 저농도 처리군에서는 TSA 농도가 증가할수록 세포주기 G1기의 빈도가 증가하였으나, 고농도 처리군에서는 G2/M기에 속하는 세포의 빈도가 증가되었다. 또한 apoptosis 유발의 간접적인 지표가 되는 sub-G1기에 속하는 세포의 빈도 역시 TSA 처리 농도 의존적으로 매우 증가되었다. 이러한 TSA의 A549 폐암세포 증식억제 효과는 cyclins 및 CdkS의 발현 억제, 종양억제유전자인 p53 및 Cdks 억제제인 p21과 p27의 발현 증가와도 연관성이 있었다. TSA의 항암 기전을 규명하기 위해서는 더 많은 연구가 부가적으로 필요하겠지만, 본 연구의 결과들에 의하면 TSA는 강력한 인체폐암세포의 증식 억제 및 항암작용이 있음을 시사하여 준다고 할 수 있다.

Single Nucleotide Polymorphism in the Promoter Region of H1 Histone Family Member N, Testis-specific (H1FNT) and Its Association Study with Male Infertility

  • Yang, Seung-Hee;Lee, Jin-U;Lee, Su-Man
    • Genomics & Informatics
    • /
    • 제8권4호
    • /
    • pp.201-205
    • /
    • 2010
  • The H1 histone family, member N, testis-specific (H1FNT) is exclusively expressed in the testis, and had its possible role for sperm chromatin formation. The purpose of this study is to investigate any genetic association of H1FNT gene with male infertility, especially at the promoter region. We examined the promoter single nucleotide polymorphisms (SNP) of H1FNT gene which is located within transcription factor binding site for its association with male infertility. The statistical analysis showed that the -1129A>T polymorphism was present at a statistically significance in male infertility (p=0.0059 and 0.0349 for hetero and risk type, respectively). The dual-luciferase promoter assay was performed to examine the polymorphic effect of this promoter SNP by the cloning of promoter region (1700bp fragment) into pGL3-basic vector. In our plasmid based reporter system, there is no big difference between wild and risk type. In conclusion, H1FNT -1129A>T promoter SNP is statistically significant with male infertility, especially with subfertile (non-azoospermia) group. Further analysis of its functional polymorphic effect in vivo may provide the biological significance of testis-specific histone with spermatogenesis.

Pharmacological Analysis of Vorinostat Analogues as Potential Anti-tumor Agents Targeting Human Histone Deacetylases: an Epigenetic Treatment Stratagem for Cancers

  • Praseetha, Sugathan;Bandaru, Srinivas;Nayarisseri, Anuraj;Sureshkumar, Sivanpillai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1571-1576
    • /
    • 2016
  • Alteration of the acetylation status of chromatin and other non-histone proteins by HDAC inhibitors has evolved as an excellent epigenetic strategy in treatment of cancers. The present study was sought to identify compounds with positive pharmacological profiles targeting HDAC1. Analogues of Vorinostat synthesized by Cai et al, 2015 formed the test compounds for the present pharmacological evaluation. Hydroxamte analogue 6H showed superior pharmacological profile in comparison to all the compounds in the analogue dataset owing to its better electrostatic interactions and hydrogen bonding patterns. In order to identify compounds with even better high affinity and pharmacological profile than 6H and Vorinostat, virtual screening was performed. A total of 83 compounds similar to Vorinostat and 154 compounds akin to analogue 6H were retrieved. SCHEMBL15675695 (PubCid: 15739209) and AKOS019005527 (PubCid: 80442147) similar to Vorinostat and 6H, were the best docked compounds among the virtually screened compounds. However, in spite of having good affinity, none of the virtually screened compounds had better affinity than that of 6H. In addition SCHEMBL15675695 was predicted to be a carcinogen while AKOS019005527 is Ames toxic. From, our extensive analysis involving binding affinity analysis, ADMET properties predictions and pharmacophoric mappings, we report Vorinostat hydroxamate analogue 6H to be a potential candidate for HDAC inhibition in treatment of cancers through an epigenetic strategy.

pFF-PMSG배지에서 돼지미성숙란의 체외배양시 Histone H1 Kinase 활성 (Histone H1 Kinase Activity during Meiotic Maturation of Porcine Oocytes Matured in pFF-PMSG)

  • 장규태;박미령;윤창현
    • 한국가축번식학회지
    • /
    • 제22권3호
    • /
    • pp.253-264
    • /
    • 1998
  • Porcine follicular oocyte, collected from antral follicles (2~5 mm in diameter) of gilt ovaries were matured in vitro porcine follicular fluid (pFF) with PMSG (pFF-PMSG) buffer with at 37$^{\circ}C$ under 5% CO2 in air their ability of maturation promoting factor (MPF), of GV and GVBD formation was examined followed during time after in vitro culture. Formation of second metaphase was observed in 57.6% and 71.2% of matured in with pFF-PMSG buffer to 45 and 50 hours after invitro. Porcine oocytes cultured in pFF-PMSG for various periods of up to 30 hours were stained with Hoechst-33342 and classified according to maturation before assaying. Histone H1 kinase (H1K) activity was assayed during meiotic maturation in porcine oocytes matured in pFF-PMSG buffer in vitro. In oocytes matured in pFF-PMSG, H1K activity was at the 30 hours after culture and increased about 15 fold than at the germinal vesicle stage with before at the cultured in vitro. This pattern is similar to those reported in non-mammalian species and su, pp.rts the concepts that H1K is ubiquitous in eukaryotes and controls the meiotic cell cycle in mammals. These results suggest that the maturation pFF-PMSG buffer used influences the fluctuation pattern of H1K activity and biological characteristics of porcine oocytes cultured in vitro.

  • PDF

Studies on the Chromatin Isolated from the Organs of Animals Received Whole-body X-ray Irradiation

  • Han, Su Nam
    • 대한수의학회지
    • /
    • 제7권2호
    • /
    • pp.13-18
    • /
    • 1967
  • 1. Within experimental chromatin, the total protein: DNA ratio did not vary in the same organs of control and irradiated rats. However, the amount of RNA and total protein associated with the DNA varied considerably among the different types of chromatin. In particular, the content of chromatin was the control tissue. RNA and total protein ratio of chromatins from brtain, liver, testis and spleen declined with experimental I organs. 2. There was the same quantitative relationship between the amount of RNA and the amount of histone-protein associated with DNA in chromatin. 3. RNA: DNA ratio of chromatin showed 1.5-2 times increas in the irradiated organs except brain. However, RNA: DNA ratio was decreased in chromatin by irradiation. 4. Histone-protein:residual protein ratio was greatly varied among the organs. However, the effect was not found by irradiation. 5. Priming activity of chromatin showed a higher value in testis and the activity was greater in organs with higher metabolic activity: 6. Inhibition of Actinomycin D is observable in chromatin from testis, liver, spleen and brain declined without relationship between irradiated and non-irradiated conditions. Ammonium sulfate showed increased priming activity by the electrostatic dissociation of DNA and histone in chromatin on the stimulation depending on property of chromatins. 7. It is suggested that the results support a proposal that testis and spleen of highly sensitive to irradiation should an increase in the priming activity whereas brain and liver of lower sensitivity decreased in the activity.

  • PDF

Non-histone protein HMGB1 inhibits the repair of damaged DNA by cisplatin in NIH-3T3 murine fibroblasts

  • Yusein-Myashkova, Shazie;Ugrinova, Iva;Pasheva, Evdokia
    • BMB Reports
    • /
    • 제49권2호
    • /
    • pp.99-104
    • /
    • 2016
  • The nuclear non-histone protein high mobility group box (HMGB) 1 is known to having an inhibitory effect on the repair of DNA damaged by the antitumor drug cisplatin in vitro. To investigate the role of HMGB1 in living cells, we studied the DNA repair of cisplatin damages in mouse fibroblast cell line, NIH-3T3. We evaluated the effect of the post-synthetic acetylation and C-terminal domain of the protein by overexpression of the parental and mutant GFP fused forms of HMGB1. The results revealed that HMGB1 had also an inhibitory effect on the repair of cisplatin damaged DNA in vivo. The silencing of HMGB1 in NIH-3T3 cells increased the cellular DNA repair potential. The increased levels of repair synthesis could be "rescued" and returned to less than normal levels if the knockdown cells were transfected with plasmids encoding HMGB1 and HMGB1 K2A. In this case, the truncated form of HMGB1 also exhibited a slight inhibitory effect.

Improving Combination Cancer Therapy by Acetaminophen and Romidepsin in Non-small Cell Lung Cancer Cells

  • Lee, Seong-Min;Park, James S.;Kim, Keun-Sik
    • 대한의생명과학회지
    • /
    • 제25권4호
    • /
    • pp.293-301
    • /
    • 2019
  • Combination chemotherapy is more effective than mono-chemotherapy and is widely used in clinical practice for enhanced cancer treatment. In this study, we investigated the potential synergistic effects of acetaminophen, a common component in many cold medicines, and romidepsin, a histone deacetylase (HDAC) inhibitor, in the A549 non-small cell lung cancer (NSCLC) cell line. The combination of acetaminophen and romidepsin also exerted significant cytotoxicity and apoptosis induced by activation of caspase-3 on tumor cells in vitro. Moreover, combination therapy significantly induced increased production of chemokines that stimulate migration of activated T-cells into tumor cells. This mechanism can lead to active T-cell mediated anti-tumor immunity in addition to the direct cytotoxic chemotherapeutic effect. Activated T-cells led to enhanced cytotoxicity in drug-treated A549 cells through interaction with tumor cells. These results suggested that the interaction between the two drugs is synergistic and significant. In conclusion, our data showed that the use of romidepsin and low concentrations acetaminophen could induce effective anti-tumor effects via enhanced tumor immune and direct cytotoxic chemotherapeutic responses. The combination of acetaminophen with romidepsin should be considered as a promising strategy for the treatment of lung cancer.

Epigenetic Regulation of Plant Reproductive Development

  • Vyskot, Boris
    • 식물조직배양학회지
    • /
    • 제27권5호
    • /
    • pp.359-366
    • /
    • 2000
  • Epigenetics represents a chromatin-mediated transcriptional repression which plays a control role in both animal and plant development. A number of different mechanisms have been described to be involved in the formation of chromatin structure: especially DNA methylation, nucleosomal histone modification, DNA replication timing, and binding of chromatin remodelling proteins. Epigenetic phenomena include genomic imprinting, dosage compensation of X-chromosome linked genes, mutual allelic interactions, paramutation, transvection, silencing of invasive DNA sequences, etc. They are often unstable and inherited in a non-Mendelian way. A number of epigenetic defects has been preferentially described in floral development. Here, epigenetic phenomena in model angiosperm plants and their corresponding mechanisms are reviewed.

  • PDF

Influence of Toxicologically Relevant Metals on Human Epigenetic Regulation

  • Ryu, Hyun-Wook;Lee, Dong Hoon;Won, Hye-Rim;Kim, Kyeong Hwan;Seong, Yun Jeong;Kwon, So Hee
    • Toxicological Research
    • /
    • 제31권1호
    • /
    • pp.1-9
    • /
    • 2015
  • Environmental toxicants such as toxic metals can alter epigenetic regulatory features such as DNA methylation, histone modification, and non-coding RNA expression. Heavy metals influence gene expression by epigenetic mechanisms and by directly binding to various metal response elements in the target gene promoters. Given the role of epigenetic alterations in regulating genes, there is potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. Here, we focus on recent advances in understanding epigenetic changes, gene expression, and biological effects induced by toxic metals.