• Title/Summary/Keyword: non-geometric

Search Result 755, Processing Time 0.029 seconds

Analysis of Geometric Parameters for Fully Developed Laminar Flow Between Cylinders Arranged in Regular Array (정규배열내의 실린더 사이에서의 완전발달된 층류 유동의 기하학적 계수의 해석)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1037-1049
    • /
    • 2001
  • Considerable interest has evolved in the flow of non-Newtonian fluids in channels of noncircular cross section in compact heat exchanges. Analytical solution was developed for prediction of the flow rate and maximum velocity in steady laminar flow of any incompressible, time-independent non-Newtonian fluids in straight closed and open channels of arbitrary, but axially unchanging cross section. The geometric parameters and function of shear describing the behavior of the fluid model were evaluated for fluid flow among a bundle of rods arranged in triangular and square array. Numerical values of dimensionless maximum velocities, mean velocities, pressure-drop-flow parameters and friction factors were evaluated as a function of porosity and pitch-to-radius ratio.

  • PDF

A Study on the Development of Measuring System for Extra Long Roller Using Non-contact Sensor (비접촉식 센서를 이용한 초장축 롤러 측정 장치 개발에 관한 연구)

  • Kim, Woong;Lee, Choon-Man;Lee, Mun-Jae;Park, Sung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.33-39
    • /
    • 2010
  • Manufacturing accuracy of a precision instrument was essential to stability and efficiency of the product. Accordingly, geometrically accuracy management of precision instrument was very becoming the technique in order to design and manufacturing for machine. In this study, Measuring System is developed for extra long roller using non-contact sensor. Futhermore, It's studied by Geometric Tolerance. Exact roundness is obtained to Least Squares method from the reference circle of measured data. Measuring System is analyzed point of measurement and straightness of extra long roller is evaluated by FEM.

Coronary Artery Numerical Flow Analysis for Determination of Bypass Graft Geometric Parameters

  • Kim, Hyung-Min;Kim, Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.905-912
    • /
    • 2005
  • A computational investigation of blood flow in a coronary artery grafted by artificial bypass was performed to determine such geometric parameters as the curvature of radius, approach length, and angle of end-to-side anastomosis. Transient flow features in the host artery were computed using FVM and SIMPLE algorithms. We compared flow distributions and wall shear stresses in two simple models, planar and non-planar, and confirmed that the non-planar bypass model was more conducive to suppressing intimal hyperplasia. Our non-planar model with $60^{\circ}$ of anastomosis and a 1.0 diameter approach length and radius of curvature predicts a relatively small, spatially-extended high-OSI (>0.01) zone, as well as an increased average wall shear stress on this zone.

Vibration Characteristics of a Semi-circular Pipe Conveying Fluid with Both Ends Clamped (유체를 이송하는 양단 고정된 반원관의 면내/면외 진동 특성)

  • 정두한;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.252-257
    • /
    • 2004
  • Free vibration of a semi-circular pipe conveying fluid is analyzed when the pipe is clamped at both ends. To consider the geometric non-linearity, this study adopts the Lagrange strain theory and the extensibility of the pipe. By using the extended Hamilton principle, the non-linear partial differential equations are derived, which are coupled to the in-plane and out-of\ulcornerplant: motions. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies are computed from the linearized equations of motion in the neighborhood of the equilibrium position. From the results. the natural frequencies for the in-plane and out-of-plane motions are vary with the flow velocity. However, no instability occurs the semi-circular pipe with both ends clamped, when taking into account the geometric non-linearity explained by the Lagrange strain theory.

  • PDF

Dynamic Analysis of a Deploying Beam with Geometric Non-Linearity and Translating Acceleration (기하학적 비선형과 이송 가속도를 갖는 전개하는 보의 동적해석)

  • Song, Deok-Ki;Chung, Jin-Tai
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.658-663
    • /
    • 2001
  • The dynamic response of an axially deploying beam is studied when the beam has geometric non-linearity and translating acceleration. Based upon the von Karman strain theory, the governing equations and the boundary conditions of a deploying beam are derived by using extended Hamilton's principle considering the longitudinal and transverse deflections. The equations of motion are discretized by using the Galerkin approximate method. From the discretized equations, the dynamic responses are computed by the Newmark time integration method.

  • PDF

Non-linear free vibrations and post-buckling analysis of shear flexible functionally graded beams

  • Anandrao, K. Sanjay;Gupta, R.K.;Ramchandran, P.;Rao, G. Venkateswara
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.339-361
    • /
    • 2012
  • Large amplitude free vibration and thermal post-buckling of shear flexible Functionally Graded Material (FGM) beams is studied using finite element formulation based on first order Timoshenko beam theory. Classical boundary conditions are considered. The ends are assumed to be axially immovable. The von-Karman type strain-displacement relations are used to account for geometric non-linearity. For all the boundary conditions considered, hardening type of non-linearity is observed. For large amplitude vibration of FGM beams, a comprehensive study has been carried out with various lengths to height ratios, maximum lateral amplitude to radius of gyration ratios, volume fraction exponents and boundary conditions. It is observed that, for FGM beams, the non-linear frequencies are dependent on the sign of the vibration amplitudes. For thermal post-buckling of FGM beams, the effect of shear flexibility on the structural response is discussed in detail for different volume fraction exponents, length to height ratios and boundary conditions. The effect of shear flexibility is observed to be predominant for clamped beam as compared to simply supported beam.

Development of Data Model for Design Information Representation of Steel Bridges (강교량 설계정보 표현을 위한 데이터모델 개발)

  • 정연석;이상호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.105-117
    • /
    • 2004
  • In each industry field, many engineers have tried to develop integrated environments using information technology. The core technology in building integrated environments is the database based on standardized information. To meet the requirements, this study builds a database with detailed design information as a part of integrating digital information generated from every work of steel bridges. The data model used to build the database was developed based on the international standard, namely ISO/STEP. The data model is classified into geometric and non-geometric parts to represent the design information of steel bridges. The geometric parts are represented by a three dimensional solid model so that they may be able to reuse existing information. Also, the non-geometric parts represent information requirements that are analyzed by the development method of standard data model. To verify the data model, this study validates the syntax of the model on EXPRESS Engine and verifies the validation of the model by applying the design data of Hannam bridge to the database.

Diameter Measurement of Cylindrical Objects by Non-Contact Method (비접촉식 방법에 의한 원통형 물체의 지름 측정)

  • Im, Bok-Ryoung;Kim, Sok-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.177-181
    • /
    • 2005
  • Although there are many ways to measure the diameter of a cylindrical object, in this study, the diameter of a cylindrical objects were measured by the geometric optical method and interference-diffraction method which are two kinds of tipical non-contact methods. In geometric optical method, the curved laser beam is formed on the cylindrical surface by spreading the inclined laser beam using the cylindrical lens. The curve is captured by CCD camera and the diameter is calculated by geometry. And the interference and diffraction patterns of investigated cylindrical objects are analyzed in interference-diffraction method. In this study, the cylindrical objects, whose diameters are $0.05\;mm\;\~\;100.50\;mm$ were measured by the geometric optical method and interference-diffraction method. The results show that in each method, the relative errors of the measurement are within $2\%$ and $1\%$, respectively and these non-contact methods can be applied in the quick measurement of many objects.

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

CAD System of New Concept to Support Top-Down Approach in Design (하향식 설계방식을 지원하는 새로운 개념의 CAD 시스템)

  • 김성환;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1604-1618
    • /
    • 1995
  • In the process of mechanical assembly design, assembly modeling systems have been used mainly for the design verification before manufacturing by enabling to check the interference and/ or the dynamic and kinematic performance. However, the conventional assembly modeling systems have a shortcoming that they can not be used in the initial design stage but can be used only after the design is fully completed. In other words conventional assembly modeling systems provide bottom-up modeling which means that the detailed modeling of components must precede the definition of relationships between them. To resolve this problem, an assembly modeling system is proposed to provide a top-down modeling environment in which components and assembly can be modeled simultaneously. To this end, an assembly data structure suitable for top-down assembly modeling has been established. Feature positioning Module(FPM) using geometric constraints has been also developed. The Sekective Solving Method proposed for FPM is based on the priority between the constraint equations and enables the designer's intent expressed by geometric constraints to be maintained throughout the whole modeling process. Finally, the feature based modeling technique using two-level features has been developed. Two-level features include an abstract model and a detailed model in a merged form in non-manifold data frame.