• Title/Summary/Keyword: non-fibrous

Search Result 146, Processing Time 0.028 seconds

Changes in Metabolites Concentration in Nguni and Crossbred Calves on Natural Pasture

  • Mapekula, M.;Mapiye, C.;Chimonyo, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1569-1576
    • /
    • 2011
  • Accurate assessment of the nutritional status of Nguni cattle is becoming increasingly important in determining their mechanism for adaptation to challenging environments. Changes in body weights and concentrations of total protein (TP), albumin, globulin, glucose, cholesterol, non-esterified fatty acids (NEFA), phosphorus (SIP), calcium and magnesium were determined in Nguni and crossbred calves raised on natural pasture from birth until weaning. At an early age, TP concentration in crossbreds was higher (p<0.05) than that of Nguni calves. However, TP levels increased with age in Nguni calves so that Nguni's had higher (p<0.05) TP levels than crossbreds at weaning. Nguni calves had higher (p<0.05) glucose concentrations than crossbreds in all the ages except in the third month. Serum NEFA levels in Nguni calves were higher (p<0.05) than in crossbreds at all ages except for the second month. Calcium levels decreased (p<0.05) with age in both genotypes. The blood TP concentrations tended to decrease (p<0.05) as body weight increased up to 80 kg, thereafter blood TP concentration increased (p<0.05) as body weight increased. Calcium concentrations in crossbred calves decreased (p<0.05) quadratically as the body weight increased. There was, however, a linear increase (p<0.05) in calcium concentrations in Nguni calves. The higher NEFA and TP concentrations at weaning and the TP increase in Nguni calves beyond 80 kg suggest that Nguni's utilise fibrous feeds better than crossbreds.

Effect of LEDs Light of 633 nm Wavelength in Skin of Organism (633 nm 파장의 LED 광원이 생체 피부에 미치는 영향)

  • Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.760-765
    • /
    • 2008
  • Low power laser therapy is internationally certified and is known to be effective in stimulating DNA in living organisms, increasing protein synthesis and activating cell division, smoothing blood circulation, promoting cell activation, cell regeneration and function. It also has anti-inflammatory, anti-edemic, anti-fibrous dysplastic and neuralogic hyperfunctional effects. This study was intended to verify the effect of LED irradiation therapy on wound healing in cell and animal tests by applying LED irradiator using a laser and laser diode, which was independently designed and developed to emit beams of similar wavelength to that of a laser. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity and reservation. In case of cell proliferation experiment, each experiment was performed to irradiation group and non-irradiation group for tissue cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590 nm transmittance of micro-plate reader. In the wound healing experiment, 1$cm^2$ wounds on the skin wound of SD-Rat(Sprague-Dawley Rat) were made. Light irradiation group and none light irradiation group divided, each group was irradiated one hour a day for 9 days. As a result, the cell increase of tissue cells was verified in irradiation group as compared to non-irradiation group. And, compared with none light irradiation group, the lower incidence of inflammation and faster recovery was shown in light irradiation group.

Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs

  • Perumal, Ramadoss;Prabakaran, V.
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.479-488
    • /
    • 2020
  • The experimental and numerical works were carried out on high performance fiber reinforced concrete (HPFRC) with w/cm ratios ranging from 0.25 to 0.40, fiber volume fraction (Vf)=0-1.5% and 10% silica fume replacement. Improvements in compressive and flexural strengths obtained for HPFRC are moderate and significant, respectively, Empirical equations developed for the compressive strength and flexural strength of HPFRC as a function of fiber volume fraction. A relation between flexural strength and compressive strength of HPFRC with R=0.78 was developed. Due to the complex mix proportions and non-linear relationship between the mix proportions and properties, models with reliable predictive capabilities are not developed and also research on HPFRC was empirical. In this paper due to the inadequacy of present method, a back propagation-neural network (BP-NN) was employed to estimate the 28-day compressive strength of HPFRC mixes. BP-NN model was built to implement the highly non-linear relationship between the mix proportions and their properties. This paper describes the data sets collected, training of ANNs and comparison of the experimental results obtained for various mixtures. On statistical analyses of collected data, a multiple linear regression (MLR) model with R2=0.78 was developed for the prediction of compressive strength of HPFRC mixes, and average absolute error (AAE) obtained is 6.5%. On validation of the data sets by NNs, the error range was within 2% of the actual values. ANN model has given the significant degree of accuracy and reliability compared to the MLR model. ANN approach can be effectively used to estimate the 28-day compressive strength of fibrous concrete mixes and is practical.

Effects of Solvent on the Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion (상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조에서의 용매의 효과)

  • Cho, Yu Song;Kim, Young Kyoung;Koo, Ja-Kyung;Park, Jong Soon
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • Porous poly(L-lactic acid)(PLLA) scaffold membranes were prepared via. phase separation process. Chloroform, dichloromethane and 1,4-dioxane were used as solvent and, ethyl alcohol was used as non-solvent. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. The scaffold membranes obtained from the casting solutions with chloroform and with dichloromethane showed similar morphologies. They showed sponge-like porous structure with the pore size in the range of $3-10{\mu}m$ and, their porosities were in 50-80% range. Using 1,4-dioxane as solvent, nano-fibrous scaffold membranes with porosities over 80% were fabricated. When the polymer content in the solution with 1,4-dioxane was lowered to 4%, highly porous, macroporous and nano-fibrous scaffold membranes were obtained. The size of the macropore was tens of the microns and the porosity was around 90%. These results indicate that the solvent has significant effect on the scaffold membrane structure and, that scaffold membranes with various structures can be fabricated through phase separation method by choosing solvent and by controlling polymer concentration in the casting solution.

Biodegradability of porous Calcium Polyphosphate (다공질 Calcium Polyphosphate의 생분해성에 관한 연구)

  • Yang, Seung-Min;Lee, Young-Kyoo;Han, Eun-Young;Kim, Seok-Young;Kye, Seung-Beom;Lee, Seung-Jin;Lee, Yong-Moo;Ku, Young;Han, Soo-Boo;Chung, Chong-Pyoung;Choi, Sang-Mook;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.3
    • /
    • pp.555-564
    • /
    • 2001
  • The purpose of this study is to evaluate the bioresorbability of Calcium Polyphosphate added with $Na_2O$ and chitosan. Though calcium phosphate ceramics meet some of the needs for bone replacement, they have some limitation of unresorbability and fibrous encapsulation without direct bone apposition during bone remodelling. To solve these problem, we developed a new ceramic, calcium polyphosphate(CPP), and report the biologic response to CPP in extraction sites of beagle dog. Porous CPP granules were prepared by condensation of anhydrous $Ca(H_2PO_4)_2$ to form non-crystalline $Ca(PO_3)_2$. CPP granules added with $Na_2O$ and chitosan were implanted in extraction sockets and histologic observation were performed at 12 weeks later. Histologic observation at 12 weeks revealed that CPP matrix were mingled with and directly apposed to new bone without any intervention of fibrous connective tissue. CPP granules added with chitosan were well adatped without any adverse tissue reaction and resorbed slowly and spontaneously. CPP granules added with $Na_2O$ and chitosan show multinucleated giant cells and osteoblast-like cells around grafted material and newly formed bone. This result revealed that CPP, regardless of its additive component, had a high affinity for bone and had been resorbed slowly. From this results, it was suggested that CPP is promising ceramic as a bone substitute and addition of $Na_2O$ and chitosan help biodegradation. In further study , it will be determined which concentration of $Na_2O$ help biodegradation and the other additive components increase the degradation rate.

  • PDF

Molecular Cloning of Novel Genes Specifically Expressed in Snailfish, Liparis tanakae (꼼치, Liparis tanakae에서 특이하게 발현되는 새로운 유전인자의 검색)

  • 송인선;이석근;손진기
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.67-77
    • /
    • 2000
  • Snailfish usually lives at the bottom of the sea and showed typical retrogressive change with specialized tissue structures of skin and skeletons. In order to obtain the specific genes of snailfish, highly expressed in the body, we made subtracted cDNA library and analyzed 200 clones. Totally 200 clones were obtained and sequenced, and among them 62 clones were turned out to be homologous to the known gene, i.e., thioesterase (9), myosin (8), creatine kinase (7), skeletal alpha-actin (6), parvalbumin b (5), ribosomal protein (5), type I collagen (3), muscle troponin (3), dopamine receptor (2), histatin (2), and heat shock protein (2), cystatin (1), lectin (1), statherin (1), secretory carrier membrane protein (1), keratin type I (1), desmin (1), chloroplast (1), muscle tropomyosin (1), reticulum calcium ATPase (1), ribonucleoprotein (1). The remaining 138 clones were low homologous or non-redundant genes through Genbank search. Especially 5 clones were novel and specifically expressed in the body tissues of Snailfish by in situ hybridization. Therefore, we analysed these 5 clones to identify the C-terminal protein structures and motifs, and partly defined the roles of these proteins in comparison with the expression patterns by in situ hybridization. C9O-77, about 5000 bp, was supposed to be a matrix protein expressed strongly positive in epithelium, myxoid tissue, fibrous tissue and collagenous tissue. C9O-116, about 1500 bp, was supposed to be a transmembrane protein which was weakly expressed in the fibrous tissue, epithelium tissue, and myxoid tissue, but strong in muscle tissue. C9O-130, about 1200 bp, was supposed to be an intracytoplasmic molecule usually in the epithelial cells. C9O-161, about 2000 bp, was weakly expressed in epithelium, muscle tissue and myxoid tissue, but specially strong in epithelium. C9O-171, about 1000 bp, was supposed to be a transcription factor containing zinc finger like domain, which was intensely expressed in the epithelium, muscle tissue, fibrous tissue, and in collagenous tissue.

  • PDF

Time-relationship between Deformation and Growth of Metamorphic Minerals around the Shinbo Mine, Korea: the Relative Mineralization Time of Uranium Mineralized Zone (신보광산 주변지역에서 변성광물의 성장과 변형작용 사이의 상대적인 시간관계: 우라늄 광화대의 상대적인 광화시기)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.385-396
    • /
    • 2012
  • The geochemical high-grade uranium anormal zone has been reported in the Shinbo mine and its eastern areas, Jinan-gun, Jeollabuk-do located in the southwestern part of Ogcheon metamorphic zone, Korea. In this paper is reported the time-relationship between deformation and growth of metamorphic minerals in the eastern area of Shinbo mine, which consists of the Precambrian metasedimentary rocks (quartzite, metapelite, metapsammite) and the age-unknown pegmatite and Cretaceous porphyry which intrude them, and is considered the relative mineralization time on the basis of the previous research's result. The D1 deformation formed the straight-type Si internal foliation which is defined mainly as the arrangement of elongate quartz, biotite, opaque mineral in andalusite porphyroblast. The D2 deformation, which is defined by the microfolding of Si foliation, formed S2 crenulation cleavage. It can be divided into two sub-phases, early crenulation and late crenulation. The former occurs as the curvetype Si foliation in the mantle part of andalusite. The latter occurs as S1-2 composite foliation which warps around the andalusite. The andalusite porphyroblast began to grow under non-deformation condition after the formation of S1 foliation which corresponds to the straight-type Si foliation. It continued to grow before the late crenulation phase. The age-unknown pegmatite intruded after the D2 deformation and grew the fibrous sillimanite which random masks the S1-2 composite foliation. The D3 deformation formed F3 fold which folded the S1-2 composite foliation, D2 crenulation, fibrous sillimanite. It means that the intrusion of pegmatite related to the growth of the fibrous sillimanite took place during the inter-tectonic phase of D2 and D3 deformations. The retrograde metamorphism is recognized by the chloritization of biotite and two-way cleavage lamellae which is parallel to the S1-2 composite foliation and the F3 fold axial surface in the andalusite porphyroblast. It occurred during the D2 late crenulation phase and D3 deformation. In considering of the previous research's result inferring the most likely candidate for the uranium source rock as pegamatite, it indicates that the age-unknown pegmatite intruded during the inter-tectonic phase of D2 and D3 deformations, i.e. during the retrograde metamorphism related to the uplifting of crust, and formed the uranium ore zone around the Shinbo mine.

Characterization of Mineralogical Changes of Chrysotile and its Thermal Decomposition by Heat Treatment (열처리에 따른 백석면의 광물학적 특성 변화와 열분해 과정 연구)

  • Jeong, Hyeonyi;Moon, Wonjin;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.77-88
    • /
    • 2016
  • Chrysotile is a 1:1 sheet silicate mineral belonging to serpentine group. It has been highlighted studies because of uses, shapes and structural characteristics of the fibrous chrysotile. However, it was designated as Class 1 carcinogen, so high attentions were being placed on detoxification studies of chrysotile. The objectives of this study were to investigate changes of mineralogical characteristics of chrysotile and to suggest detoxification mechanism of chrysotile by thermal decomposition. Samples for this study were obtained from LAB Chrysotile mine in Canada. The samples were heated in air in the range of 600 to $1,300^{\circ}C$. Changes of mineralogical characteristics such as crystal structure, shape, and chemical composition of the chrysotile fibers were examined by TG-DTA, XRD, FT-IR, TEM-EDS and SEM-EDS analyses. As a result of thermal decomposition, the fibrous chrysotile having hollow tube structure was dehydroxylated at $600-650^{\circ}C$ and transformed to disordered chrysotile by removal of OH at the octahedral sheet (MgOH) (Dehydroxylation 1). Upon increasing temperature, it was transformed to forsterite ($Mg_2SiO_4$) at $820^{\circ}C$ by rearrangement of Mg, Si and O (Dehydroxylation 2). In addition, crystal structure of forsterite had begun to transform at $800^{\circ}C$, and gradually grown 3-dimensionally to enstatite ($MgSiO_3$) by recrystallization after the heating above $1,100^{\circ}C$. And then finally transformed to spherical minerals. This study showed chrysotile structure was collapsed about $600-700^{\circ}C$ by dehydroxylation. And then the fibrous chrysotile was transformed to forsterite and enstatite, as non-hazardous minerals. Therefore, this study indicates heat treatment can be used to detoxification of chrysotile.

Mineralogical Characteristics of Carbonate Rock-Hosted Naturally Occurring Asbestos from Asan, Muju, Jangsu Areas (국내 탄산염암 지역(아산, 무주, 장수)에서 산출되는 자연발생석면의 광물학적 특성)

  • Shin, Eunhea;Jeong, Hyeonyi;Baek, Jiyeon;Jeong, Hyewon;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.309-322
    • /
    • 2018
  • Naturally occurring asbestos (NOA) occurs in rocks and soils as a result of natural weathering and human activities. It is proved that inhalation of asbestos fibers can lead to increase risk of developing several diseases such as lung cancer and malignant mesothelioma. The parent rocks of asbestos have been mainly associated with (ultra)mafic and carbonate rock. The previous studies on NOA were mainly limited to (ultra)mafic rock-hosted asbestos, but studies on carbonate rock-hosted asbestos are relatively rare in S. Korea. Therefore, this study was aimed to examine mineralogical characteristics of carbonate rock-hosted NOA at three sites including Muju and Jangsu, Jeonbuk province and Asan, Chungnam province. Types of rocks at the three sites mainly consisted of Precambrian metasedimentary rocks, carbonate rock, and Cretaceous and Jurassic granites. Asbestos-containing carbonate rock samples were obtained for mineralogical characterization. XRD, PLM, EPMA, SEM and EDS analyses were used to characterize mineralogical characteristics of the carbonate rock-hosted NOA. From the carbonate rock, fibrous minerals were occurred acicular and columnar forms in the three sites. Fibrous minerals were composed of mainly tremolite and associated minerals included possibly asbestos containing materials (ACM) such as talc, vermiculite, and sepiolite. The length and aspect ratios of tremolite were similar to the standard asbestiform (length >$5{\mu}m$, length:width = 3:1). These results indicate that both non-asbestiform and asbestiform tremolite with acicular forms occurred in carbonate rocks at three sites. Geological and geochemical characteristics and mineral assemblages indicate tremolite and associated minerals might be formed by hydrothermal alternation and/or hydrothermal veins of carbonate rocks due to intrusion of acidic igneous rocks.

Time-relationship between deformation and metamorphism of the Paleozoic metasedimentary rocks of the north Sobaegsan massif in the Janggunbong area, Korea (장군봉지역 북부 소백산육괴의 고생대 변성퇴적암류에 대한 변형작용과 변성작용 사이의 상대적인 시간관계)

  • 강지훈;오세봉;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.190-206
    • /
    • 1998
  • The microstructures and time-relationship between deformation and growth of metamorphic minerals(metamorphism) of the Paleozoic metasedimentary rocks(Joseon Supergroup and Pyeongan Group) in the Janggunbong area at the central-south part in the North Sobaegsan Massif, Korea, have been analyzed in this paper. The first phase metamorphism (low-pressure type metamorphism), recognized as the crystallization of stack-type chloritoid and biotite and augen-type old andalusite, occurred under non-deformational condition before D1 deformation related to the formation of an E-W trending isocline-synclinal fold(Janggunbong fold) and associated its axial plane S1 foliation, and produced regional mineralogical zoning of E-W trend in the Paleozoic rocks. The second phase metamorphism(medium-pressure type metamorphism), related to the growth of staurolite and garnet porphyroblasts with straight or curved internal foliations(Si), occurred under non-deformational condition after D1 deformation related to the formation of E-W trending thrusts modifying the Janggunbong fold and during D2 deformation related to the formation of E-W trending Yecheon shear zone. This metamorphism also produced regional mineralogical zoning of E-W trend. After D2 deformation occurred the intrusion of Jurassic Chunyang granite and associated its contact metamorphism which crystallized patchy-type young andalusite and prismatic- or fibrous-type sillimanite and coarse-grained garnet. This metamorphism occurred under non-deformational condition before D3 deformation related to the formation of S3 crenulation cleavage and during early phase of D3 deformation, and formed narrow mineralogical zoning of N-S trend near Chunyang granite.

  • PDF