• Title/Summary/Keyword: non-dipole magnetic model

Search Result 8, Processing Time 0.022 seconds

Teachers' Understanding of Declination and Its Explanation Presented in the Earth Science II Textbook (편각에 대한 교사의 이해와 지구과학 II 교과서의 기술)

  • Lee, Gyuho
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.585-597
    • /
    • 2014
  • This study surveys how teachers can improve their understanding about the concept of declination only through reading the material presented as non-dipole magnetic model. This study also investigates a difference between the content of declination presented in "Earth Science II" textbook under the 2009 revised National Curriculum and that of the past one. Thirty teachers in Gyeonggi province and thirty three in the city of Seoul are surveyed; they are selected from the participants of required training that provides their first grade regular teaching certification. Findings of this study are as follows. First, the study finds that teacher participants possess several misconceptions about the declination. Their typical misconception show that a compass needle directly indicates the magnetic north pole. This type of misconception is not corrected only by a reading the material. Second, the study shows that the degree of teachers' understanding about the concept of declination improves through the reading the material of a non-dipole magnetic model. Third, the study reveals that the material of nod-dipole magnetic model is more effective with teachers than students. Finally, the study suggests that explanations including non-dipole magnetic model be revised in the current textbooks.

A Study on Dipole Modeling Method for Ship's Magnetic Anomaly using Singular Value Decomposition Technique (특이치 분해 방법에 의한 함정 자기원 다이폴 모델링 방안 연구)

  • Yang, Chang-Seob;Chung, Hyun-Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.259-264
    • /
    • 2007
  • This paper describes the mathematical modeling method for the static magnetic field signature generated by a magnetic scale model. we proposed the equivalent dipole modeling method utilizing a singular value decomposition technique from magnetic field signatures by magnetic sensors are located special depths below the scale model. The proposed dipole modeling method was successfully verified through comparisons with the real measured values in our non-magnetic laboratory. Using the proposed method, it is possible to predict and analyze static magnetic field distributions at any difference depths generated from the real ships as well as a scale model ship.

An Algorithm for the Characterization of Surface Crack by Use of Dipole Model and Magneto-Optical Non-Destructive Inspection System

  • Lee, Jin-Yi;Lyu, Sung-Ki;Nam, Young-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1072-1080
    • /
    • 2000
  • Leakage magnetic flux (LMF) is widely used for non-contact detection of cracks. The combination of optics and LMF offers advantages such as real time inspection, elimination of electrical noise, high spatial resolution, etc. This paper describes a new nondestructive evaluation method based on an original magneto-optical inspection system, which uses a magneto-optical sensor, LMF, and an improved magnetization method. The improved magnetization method has the following characteristics: high observation sensitivity, independence of the crack orientation, and precise transcription of the geometry of a complex crack. The use of vertical magnetization enables the visualization of the length and width of a crack. The inspection system provides the images of the crack, and shows a possibility for the computation of its depth.

  • PDF

Theoretical Consideration of Nondestructive Testing by use of Vertical Magnetization and Magneto-Optical Sensor

  • Lee, Jinyi;Tetsuo Shoji;Dowon Seo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.640-648
    • /
    • 2004
  • This paper describes a new magnetization method for non-destructive testing with magneto-optical sensor (denoted as MO sensor) which have the following characteristic : high observation sensitivity, independence of the crack orientation, and precise imaging of a complex crack geometry such as multiple cracks. When a magnetic field is applied normally to the surface of a specimen which is significantly larger than its defects, approximately the same magnetic charge per unit area occurs on the surface of the specimen. If there is a crack in the specimen, magnetic charge per unit area has the same value at the bottom of the crack. The distribution of the vertical component of the magnetic flux density, B$\_$Z/, is almost uniform over the no-crack area (denoted as B$\_$Z,BASE/), while the magnetic flux density is smaller in the surroundings of the crack(denoted as B$\_$Z,CRACK/) If B$\_$Z, BASE/ is a bit larger than the saturated magnetic flux density of the MO sensor (B$\_$s/) , then small magnetic domains occur over the crack area and a large domain over the non-crack area because B$\_$Z,CRACK/ is smaller than B$\_$s/.

Analysis of CHAMP Magnetic Anomalies for Polar Geodynamic Variations

  • Kim Hyung Rae;von Frese Ralph R.B.;Park Chan-Hong;Kim Jeong Woo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.91-98
    • /
    • 2005
  • On board satellite magnetometer measures all possible magnetic components, such as the core and crustal components from the inner Earth, and magnetospheric, ionospheric and' its coupled components from the outer Earth. Due to its dipole and non-dipole features, separation of the respective component from the measurements is most difficult unless the comprehensive knowledge of each field characteristics and the consequent modeling methods are solidly constructed. Especially, regional long wavelength magnetic signals of the crust are strongly masked by the main field and dynamic external field and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar region relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects that are closely related to the geomagnetic storms affecting ionospheric current disturbances. To help isolate regional lithospheric anomalies from core field components, the correlations between CHAMP magnetic anomalies and the pseudo-magnetic effects inferred from satellite gravity-derived crustal thickness variations can also be exploited, Isolation of long wavelengths resulted from the respective source is the key to understand and improve the models of the external magnetic components as well as of the lower crustal structures. We expect to model the external field variations that might also be affected by a sudden upheaval like tsunami by using our algorithm after isolating any internal field components.

Fracture characterization with high frequency single-hole EM survey

  • Seo, Soon-Jee;Song, Yoon-Ho;Kim, Hee-Joon;Lee, Ki-Ha;Suh, Jung-Hee
    • Proceedings of the KSEEG Conference
    • /
    • 1999.04a
    • /
    • pp.90-93
    • /
    • 1999
  • We present a high frequency electromagnetic (EM) inversion scheme for detecting and characterizing a fracture using single-hole data. At high frequencies, say above tens of mega-hertz, since displacement currents cannot be ignored, electrical permittivity as well as electrical conductivity is to be considered together for analyzing the EM scattering data. In this paper, we have developed a three-step inversion scheme to map the fracture and to evaluate its electrical conductivity and permittivity. We performed EM profiling along the z-axis using three-component receivers for each source. The model was excited by a vertical magnetic dipole and the resistant magnetic fields were inverted using the non-linear least-squares method. Background resistivity and permittivity were easily obtained using vertical magnetic fields below 1 MHz and above 10 MHz, respectively. Both the vertical and dipping sheets were successfully mapped using the phase difference between 40 and 41 MHz. The electrical property of the sheet was well resolved using the information obtained in the previous two steps and secondary magnetic fields. Our study shows the potential of imaging the fracture in single-hole survey environment using the high frequency EM method.

  • PDF

CALIBRATION OF VECTOR MAGNETOGRAMS BY SOLAR FLARE TELESCOPE OF BOAO

  • MOON YONG-JAE;PARK YOUNG DEUK;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.65-73
    • /
    • 1999
  • In this study we present a new improved nonlinear calibration method for vector magnetograms made by the Solar Flare Telescope of BOAO. To identify Fe I 6302.5 line, we have scanned monochromatic images of the line integrated over filter passband, changing the location of the central transmission wavelength of a Lyot filter. Then we obtained a filter-convolved line profile, which is in good agreement with spectral atlas data provided by the Sacramento Peak Solar Observatory. The line profile has been used to derive calibration coefficients of longitudinal and transverse fields, employing the conventional line slope method under the weak field approximation. Our improved nonlinear calibration method has also been used to calculate theoretical Stokes polarization signals with various angles of inclination of magnetic fields. For its numerical test, we have compared input magnetic fields with the calibrated ones, which have been derived from the new improved non-linear method and the conventional method respectively. The numerical test shows that the calibrated fields obtained from the improved method are consistent with the input fields, but not with those from the conventional method. Finally, we applied our new improved method to a dipole model which characterizes a typical field configuration of a single, round sunspot. It is noted that the conventional method remarkably underestimates the transverse field component near the inner penumbra.

  • PDF

Geomagnetic Paleosecular Variation in the Korean Peninsula during the First Six Centuries (기원후 600년간 한반도 지구 자기장 고영년변화)

  • Park, Jong kyu;Park, Yong-Hee
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.611-625
    • /
    • 2022
  • One of the applications of geomagnetic paleo-secular variation (PSV) is the age dating of archeological remains (i.e., the archeomagnetic dating technique). This application requires the local model of PSV that reflects non-dipole fields with regional differences. Until now, the tentative Korean paleosecular variation (t-KPSV) calculated based on JPSV (SW Japanese PSV) has been applied as a reference curve for individual archeomagnetic directions in Korea. However, it is less reliable due to regional differences in the non-dipole magnetic field. Here, we present PSV curves for AD 1 to 600, corresponding to the Korean Three Kingdoms (including the Proto Three Kingdoms) Period, using the results of archeomagnetic studies in the Korean Peninsula and published research data. Then we compare our PSV with the global geomagnetic prediction model and t-KPSV. A total of 49 reliable archeomagnetic directional data from 16 regions were compiled for our PSV. In detail, each data showed statistical consistency (N > 6, 𝛼95 < 7.8°, and k > 57.8) and had radiocarbon or archeological ages in the range of AD 1 to 600 years with less than ±200 years error range. The compiled PSV for the initial six centuries (KPSV0.6k) showed declination and inclination in the range of 341.7° to 20.1° and 43.5° to 60.3°, respectively. Compared to the t-KPSV, our curve revealed different variation patterns both in declination and inclination. On the other hand, KPSV0.6k and global geomagnetic prediction models (ARCH3K.1, CALS3K.4, and SED3K.1) revealed consistent variation trends during the first six centennials. In particular, the ARCH3K.1 showed the best fitting with our KPSV0.6k. These results indicate that contribution of the non-dipole field to Korea and Japan is quite different, despite their geographical proximity. Moreover, the compilation of archeomagnetic data from the Korea territory is essential to build a reliable PSV curve for an age dating tool. Lastly, we double-check the reliability of our KPSV0.6k by showing a good fitting of newly acquired age-controlled archeomagnetic data on our curve.