• Title/Summary/Keyword: non-destructive ultrasonic testing

Search Result 130, Processing Time 0.018 seconds

Effect of hygrothermal aging on GFRP composites in marine environment

  • Garg, Mohit;Sharma, Shruti;Sharma, Sandeep;Mehta, Rajeev
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.93-104
    • /
    • 2017
  • In the present work, the effect of hygrothermal aging on the glass fibre and epoxy matrix interface has been investigated by destructive and non-destructive techniques. The glass fiber reinforced polymer (GFRP) composite laminates were prepared using Vacuum Assisted Resin Infusion Molding (VARIM) technique and the specimens were immersed in simulated seawater, followed by quantitative measurement. Besides this, the tensile tests of GFRP specimens revealed a general decrease in the properties with increasing aging time. Also, exposed specimens were characterized by a non-destructive ultrasonic guided Lamb wave propagation technique. The experimental results demonstrate a correlation between the drop in ultrasonic voltage amplitude and fall in tensile strength with increasing time of immersion. Hence, the comparison of the transmitted guided wave signal of healthy vis-a-vis specimens subjected to different extents of hygrothermal aging facilitated performance evaluation of GFRP composites.

Evaluation of Non Destructive Inspection Interval for Running Safety of Railway Axle (철도차량 안전성을 위한 주행 차축의 비파괴 검사주기 평가)

  • Kwon, Seok Jin;Lee, Dong Hyung;Seo, Jung Won;Kim, Jae Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.777-782
    • /
    • 2014
  • Usually, railway axles are designed for infinite life based on endurance limit of the material and the axle is not fractured immediately when a surface crack initiated. The railway axles have been inspected regularly by NDT such as ultrasonic testing, magnetic testing and eddy current testing and so on. Because the axle failure is profoundly influenced by the probability of missing a fatigue crack during an NDT inspection, it is necessary to evaluate the Non Destructive Interval of railway axle. In the present paper, the Non Destructive Interval of railway axle based on fracture mechanics and finite element analysis was investigated. It was shown that the Non Destructive Interval of railway axle can be evaluated using fracture mechanics approach and extended using NDT which a crack can detect clearly.

Ultrasonic characterization of exhumed cast iron water pipes

  • Groves, Paul;Cascante, Giovanni;Knight, Mark
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.241-262
    • /
    • 2011
  • Cast iron pipe has been used as a water distribution technology in North America since the early nineteenth century. The first cast iron pipes were made of grey cast iron which was succeeded by ductile iron as a pipe material in the 1940s. These different iron alloys have significantly different microstructures which give rise to distinct mechanical properties. Insight into the non-destructive structural condition assessment of aging pipes can be advantageous in developing mitigation strategies for pipe failures. This paper examines the relationship between the small-strain and large-strain properties of exhumed cast iron water pipes. Nondestructive and destructive testing programs were performed on eight pipes varying in age from 40 to 130 years. The experimental program included microstructure evaluation and ultrasonic, tensile, and flexural testing. New applications of frequency domain analysis techniques including Fourier and wavelet transforms of ultrasonic pulse velocity measurements are presented. A low correlation between wave propagation and large-strain measurements was observed. However, the wave velocities were consistently different between ductile and grey cast iron pipes (14% to 18% difference); the ductile iron pipes showed the smaller variation in wave velocities. Thus, the variation of elastic properties for ductile iron was not enough to define a linear correlation because all the measurements were practically concentrated in single cluster of points. The cross-sectional areas of the specimens tested varied as a result of minor manufacturing defects and levels of corrosion. These variations affect the large strain testing results; but, surface defects have limited effect on wave velocities and may also contribute to the low correlations observed. Lamb waves are typically not considered in the evaluation of ultrasonic pulse velocity. However, Lamb waves were found to contribute significantly to the frequency content of the ultrasonic signals possibly resulting in the poor correlations observed. Therefore, correlations between wave velocities and large strain properties obtained using specimens manufactured in the laboratory must be used with caution in the condition assessment of aged water pipes especially for grey cast iron pipes.

Predicting the Firmness of Apples using a Non-contact Ultrasonic Technique

  • Lee, Sangdae;Park, Jeong-Gil;Jeong, Hyun-Mo;Kim, Ki-Bok;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.192-198
    • /
    • 2013
  • Purpose: Methods for non-destructive estimation of product quality have been reported in various industrial fields, but the application of ultrasonic techniques for the agricultural products of potatoes, pears, apples, watermelons, kiwis and tomatoes etc. have been rarely reported since the application of a contact-type ultrasonic transducer in agricultural products is very difficult. Therefore, this study sought to determine the firmness of apples using non-contact ultrasonic techniques. Methods: For this experiment, an ultrasonic experimental tester using a non-contact ultrasonic transducer was created, and a signal processing program was used to analyze the acquired ultrasonic reflected signal. Also, a universal testing machine was used to measure firmness parameters of the apples such as bioyield strength, a firmness factor, after the ultrasonic tests had been performed. Results: Six distance correction factors were calculated to obtain consistent values of ultrasonic properties regardless of the distance between the transducer and the surface of the subject. We developed prediction models of the bioyield strength using the distance correction factors. Conclusions: The optimum prediction model of the bioyield strength of apples using a non-contact ultrasonic technique was a multiple regression model ($R^2=0.9402$).

Mobile NDT Inspection System Using Ultrasonic (초음파를 이용한 모바일 비파괴 검사 시스템)

  • Kwon, Seong-Geun;Lee, Suk-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.105-111
    • /
    • 2016
  • In order to inspect the quality of spot welding, inefficient destructive test and NDT (non destructive testing) utilizing expensive foreign ultrasonic inspection are being conducted in the automobile production lines, but NDT will be difficult to be used in the domestic automobile production due to complexity of the waveform analysis and lack of mobility. In this paper, NDT system inspecting the quality of spot welding based on mobile network is proposed to complement drawbacks of the conventional inefficient destructive testing and NDT inspecting the quality of spot welding. Regardless of daily condition of NDT tester, the proposed NDT system can determine the quality of spot welding automatically and transmit the information of NDT quality to smart devices of field workers in real-time so that convenience of NDT and productivity of automobile production will be improved. Several specimens with a variety of welding quality was produced to evaluate the performance of the proposed mobile ultrasonic NDT system and the conventional foreign equipment, through this experiments, the proposed mobile ultrasonic NDT system indicate the superior properties compared to the conventional equipment in terms of convenience, productivity, and economic.

Correlation of rebound hammer and ultrasonic pulse velocity methods for instant and additive-enhanced concrete

  • Yudhistira J.U. Mangasi;Nadhifah K. Kirana;Jessica Sjah;Nuraziz Handika;Eric Vincens
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.41-55
    • /
    • 2024
  • This study aims to determine the characteristics of concrete as identified by Rebound Hammer and Ultrasonic Pulse Velocity (UPV) tests, focusing particularly on their efficacy in estimating compressive strength of concrete material. The study involved three concrete samples designed to achieve a target strength of 29 MPa, comprising normal concrete, instant concrete, and concrete with additives. These were cast into cube specimens measuring 150×150×150 mm. Compressive strength values were determined through both destructive and non-destructive testing on the cubic specimens. As a result, the non-destructive methods yielded varying outcomes for each correlation approach, influenced by the differing constituent materials in the tested concretes. However, normal concrete consistently showed the most reliable correlation, followed by concrete with additives, and lastly, instant concrete. The study found that combining Rebound Hammer and UPV tests enhances the prediction accuracy of compressive strength of concrete. This synergy was quantified through multivariate regression, considering UPV, rebound number, and actual compressive strength. The findings also suggest a more significant influence of the Rebound Hammer measurements on predicting compressive strength for BN and BA, whereas UPV and RN had a similar impact on predicting BI compressive strength.

A Study on the Application of Non-destructive (Ultrasonic) Inspection Technique to Detect Defects of Anchor Bolts for Road Facilities (도로시설물 적용 앵커볼트 결함 검출을 위한 비파괴(Ultrasonic) 검사 기법 적용에 대한 연구)

  • Dong-Woo Seo;Jaehwan Kim;Jin-Hyuk Lee;Han-Min Cho;Sangki Park;Min-Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • The general non-destructive inspection method for anchor bolts in Korea applies visual inspection and hammering inspection, but it is difficult to check corrosion or fatigue cracks of anchor bolts in the part included in the foundation or in the part where the nut and base plate are installed. In reality, objective investigation is difficult because inspection is affected by the surrounding environment and individual differences, so it is necessary to develop non-destructive inspection technology that can quantitatively estimate these defects. Inspection of the anchor bolts of domestic road facilities is carried out by visual inspection, and since the importance of anchor bolts such as bridge bearings and fall prevention facilities is high, the life span of bridges is extended through preventive maintenance by developing non-destructive testing technology along with existing inspection methods. Through the development of this technology, non-destructive testing of anchor bolts is performed and as a technology capable of preemptive/active maintenance of anchor bolts for road facilities, practical use is urgently needed. In this paper, the possibility of detecting defects in anchor bolts such as corrosion and cracks and reliability were experimentally verified by applying the ultrasonic test among non-destructive inspection techniques. When the technology development is completed, it is expected that it will be possible to realize preemptive/active maintenance of anchor bolts by securing source technology for improving inspection reliability.

The use of neural networks in concrete compressive strength estimation

  • Bilgehan, M.;Turgut, P.
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.271-283
    • /
    • 2010
  • Testing of ultrasonic pulse velocity (UPV) is one of the most popular and actual non-destructive techniques used in the estimation of the concrete properties in structures. In this paper, artificial neural network (ANN) approach has been proposed for the evaluation of relationship between concrete compressive strength, UPV, and density values by using the experimental data obtained from many cores taken from different reinforced concrete structures with different ages and unknown ratios of concrete mixtures. The presented approach enables to find practically concrete strengths in the reinforced concrete structures, whose records of concrete mixture ratios are not yet available. Thus, researchers can easily evaluate the compressive strength of concrete specimens by using UPV values. The method can be used in conditions including too many numbers of the structures and examinations to be done in restricted time duration. This method also contributes to a remarkable reduction of the computational time without any significant loss of accuracy. Statistic measures are used to evaluate the performance of the models. The comparison of the results clearly shows that the ANN approach can be used effectively to predict the compressive strength of concrete by using UPV and density data. In addition, the model architecture can be used as a non-destructive procedure for health monitoring of structural elements.

Evaluation of Influences of Artificial Defect of Wood Deck Using Non-destructive Ultrasonic Testing (목재 데크재의 초음파 비파괴시험에 의한 인위적인 결함의 영향평가)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Non-destructive ultrasonic testing was applied to evaluate the performance of wood deck material with hole as artificial defect. Ultrasonic velocities and modulus of elasticity were measured according to different diameters and numbers of holes, and comparative analysis to each data were done. From the results, ultrasonic velocities and modulus of elasticity decreased with an increase in the hole size and showed a negative linear correlation with the size of hole, respectively. As the hole size increased, ultrasonic velocities decreased, but their difference was small in the case of the hole size under 15 mm. Also, ultrasonic velocities and modulus of elasticity decreased with increasing the number of holes and showed a strong negative linear correlation to the number of holes. As the number of holes increased, ultrasonic velocities decreased to 3.5%, but modulus of elasticity decreased to 27%. Therefore, the number of holes showed greater influence to modulus of elasticity than ultrasonic velocity. Overall, the size and number of holes influenced to ultrasonic velocity and modulus of elasticity, and their influence will be greater as the size and number of holes increases. These results suggested that several ultrasonic parameters rather than a single ultrasonic velocity should be applied to detect small defects in wood decking materials.

Non-destructive Inspection of Top-Down Construction Joints of Column in SRC Structure using Ultrasonic Method (초음파법을 이용한 콘크리트 역타시공 이음부 공극의 화상검출특성)

  • Park, Seok-Kyun;Baek, Un-Chan;Lee, Han-Bum;Kim, Myoung-Mo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.290-295
    • /
    • 2000
  • The joint treatment of concrete is one of the technical problems in top down construction method. Joints created with the top down construction result in serious weakness from the aspects of both structural and water-barrier function. Ultrasonic method was used for the inspection of top down construction joints of a various column in SRC structure in this study. The advantages and limitations of this method for non-destructive inspection in top down construction joints are investigated. As a result, it has been verified that the semi-direct measurement method is more effective than the other methods for detecting the voids of construction joints using ultrasonic method.

  • PDF