• Title/Summary/Keyword: non-destructive ultrasonic testing

Search Result 130, Processing Time 0.021 seconds

Field Inspection of Phase-Array Ultrasonic for PolyEthylene Electrofusion Joints

  • Kil, Seong-Hee;Jo, Young-Do;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.22-25
    • /
    • 2012
  • Welding and/or fusion in polyethylene(PE) system made on site is focused on the control of the welding or fusion process to follow proper procedure. The process control is important, but it is not sufficient for the long term reliability of a pipe system. To achieve the rate of failure close to zero, Non Destructive Testing(NDT) is necessary in addition to joining process control. For electrofusion joints several non-destructive testing methods are available. The ultrasonic phased array technique is possible to detect various defects including wire deviations and regions with lack of fusion. In this studies, testing was carried to detect the defect after electrofusion joining of polyethylene piping is utilized by the ultrasonic phased array technique. From testing data, ultrasonic phased array technique is recommended as a reliable non-destructive testing method.

A Structure Non-Contact and Non-destructive Evaluation Using Laser-Ultrasonics Application (구조물의 비접촉 비파괴 검사를 위한 레이저 초음파법 적용)

  • Kim Jae-Yeal;Song Kyung-Seok;Yang Dong-Jo;Kim You-Hong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.71-76
    • /
    • 2005
  • The defects evaluation of the interior and the surface would be considered as vital characteristics in predicting the total life span of the steel structure. More importantly, the understandings in the interior composite of welding zone and the notifications in the presence, the formation, and the positioning of the non-metallic inclusion are necessary as well, since there were signs of relatively high defect frequency presented in the welding zone. The ultrasonic testing is a highly recommended technique chosen from among other techniques because of variety of advantages in conducting the non-destructive testing for the welding zone. However, the ultrasonic testing had technical disadvantages referred as followings; the problems due to the couplant between the PZT and the specimen, the formations that were miniature and complex, the moving subject, and the high temperature surrounding the specimen. This research was conducted to resolve the technical disadvantages of the contact ultrasonic testing by studying the non-contact ultrasonic testing where the ultrasonic waves were transferred by the laser, and revealing the specimen defects at its interior part and its surface part. The ultimate goal of this research was to develop a non-destructive evaluation applying the laser manipulated ultrasonic method for the steel structure.

  • PDF

Non-destructive assessment of carbonation in concrete using the ultrasonic test: Influenced parameters

  • Javad Royaei;Fatemeh Nouban;Kabir Sadeghi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.301-308
    • /
    • 2024
  • Concrete carbonation is a continuous and slow process from the outside to the inside, in which its penetration slows down with the increased depth of carbonation. In this paper, the results of the evaluation of the measurement of concrete carbonation depth using a non-destructive ultrasonic testing method are presented. According to the results, the relative nonlinear parameter caused more sensitivity in carbonation changes compared to Rayleigh's fuzzy velocity. Thus, the acoustic nonlinear parameter is expected to be applied as a quantitative index to recognize carbonation effects. In this research, combo diagrams were developed based on the results of ultrasonic testing and the experiment to determine carbonation depth using a phenolphthalein solution, which could be considered as instructions in the projects involving non-destructive ultrasonic test methods. The minimum and maximum accuracy of this method were 89% and 97%, respectively, which is a reasonable range for operational projects. From the analysis performed, some useful expressions are found by applying the regression analysis for the nonlinearity index and the carbonation penetration depth values as a guideline.

Non destructive test of Fire-damaged reinforced concreted beams with high strength concrete (화재 피해를 입은 고 강도 철근콘크리트 휨 부재의 비파괴 검사)

  • 신미경;신영수;이차돈;홍성걸;김희선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.651-654
    • /
    • 2003
  • Non-destructive testing is essential in the inspection of alteration, repair and new construction in construction industry. This paper is to evaluate the strength variation of fire damaged concrete by non-destructive testing. Furthermore, It is to infer the recovery degree of residual strength of fire-damaged concrete. For this purpose, researchers are exploring the performance of non-destructive testing method using ultrasonic testing and Schmidt hammer in concrete specimens. Testing is performed four-times: before fire test, directly after fire test, after 20 days and after 60 days.

  • PDF

A Design and Experiment of Pressure and Shape Adaptive Mechanism for Detection of Defects in Wind Power Blade (풍력 발전용 블레이드 접합부의 결함 검출을 위한 일정가압 메커니즘 설계 및 실험)

  • Lim, Sun;Lim, Seung Hwan;Jeong, Ye Chan;Chi, Su Chung;Nam, Mun Ho
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.224-235
    • /
    • 2017
  • Purpose: Reliability is the most important factor to detect defects as wind turbines are deployed in large blades. The methods of detecting defects are various, such as non-destructive inspection and thermal imaging inspection. We propose the phased array ultrasonic testing method of non-destructive testing. Methods: We propose the active pressure mechanism for wind power blade. The phase array ultrasonic inspection method is used for fault detection inner blade surface. Controlled pressure of mechanism with respect to z-axis is important for guarantee the result of phase array ultrasonic inspection. The model based control and proposed mechanism are utilized for overall system stability and effectiveness of system. Result: The result of proposed pressure mechanism B is more stable than A. Convergence speed is also faster than A. Conclusion: We confirmed the performance of the proposed constant pressure mechanism through experiments. Non-destructive testing was applied to the specimen to confirm the reliability of detecting defects.

Optimal Test Condition by Ultrasonic Simulation (초음파 시뮬레이션을 이용한 최적의 탐상조건)

  • Huh, Sun-Chul;Park, Young-Chul;Boo, Myung-Hwan;Kang, Jung-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.45-54
    • /
    • 1999
  • Non destructive test is applied to revise mechanical strength and assume material strength or defect of material, equipment and structure, instead of fracture test. Especially, ultrasonic test has the characteristics such as an excellent permeability high-sensitiveness to fine defect and an almost exact measurement for position, size and direction of inner defect which differ from other non destructive tests. In this study, the program is developed to evaluate optimal testing condition, to distinguish obstacle echo and defect position. This program on the basic of Ray-Tracing model shows generation and processing of ultrasonic pulse. The simulation is compared with testing in the 3 cases of an oblique angle transducer like $45^{\circ},\;60^{\circ}\;and\;70^{\circ}$. The test result for all conditions is well compared with simulation result when relative not is within $0.1{\sim}7.2%$. And the course of several echos is simply assumed through simulation.

  • PDF

Estimation of concrete strength by non-destructive combined method and its application (복합비파괴검사법에 의한 콘크리트 강도평가와 그 응용)

  • Hahn, Hyuk-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.1
    • /
    • pp.35-39
    • /
    • 1992
  • The purpose of this report is to obtain a practical expression for estimating the compressive strength of concrete using the non-destructive method of testing combining rebound number and ultrasonic pulse velocity at the construction sites for obtaining highest accuracy in predicting the compressive strength.

  • PDF

A Study on the Application of Early Estimation Methods and Non-Destructive Testing for the Strength of Recycled Aggregate Concrete(II) -Part 2 : Non-Destructive Testing- (재생골재 콘크리트의 강도 조기추정 및 비파괴실험 적용성에 관한 연구(II) -제 2보- 비파괴시험)

  • 윤기원;최청각;한천구;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.61-64
    • /
    • 1993
  • This study is aimed to analyze the influencing factor on the non-destructive testing by measuring rebound number of schmidt hammer and ultrasonic pulse velocity according to the variation of recycled aggregate kinds. And this study is to provide the reference data on application of practical use.

  • PDF

Ultrasonic Simulation for Test Condition Estimate (탐상조건 예측을 위한 초음파 시뮬레이션)

  • Huh, Sun-Chul;Park, Young-Chul;Lee, Kwang-Young;Park, Won-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.37-44
    • /
    • 2001
  • Ultrasonic testing has a characteristics such as excellent permeability, high-sensitivity to find defect and an almost exact measurement for position. size and direction of inner defect, which differ from other non-destructive testing. In the study, we developed program into optimal testing condition, to distinguish obstacle echo and defect position. This program shows generation and processing of ultrasonic pulse. We compared simulation with ultrasonic test in 45$^\circ$, 60$^\circ$and 70$^\circ$transducer. Test results were in accordance with simulation within 0.1~7.2%.

  • PDF

Non-destructive Testing Methods to Evaluate the Effectiveness of Crack Repair Using Expoxy and Microcement (균열 주입부의 비파괴 검사에 의한 주입효과 판정에 관한 연구)

  • 최홍식;이시우;이호범;송영철;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.841-846
    • /
    • 2002
  • Development on non-destructive testing methods were performed to evaluate the effectiveness of crack repair for test beams induced a crack. Cracked beams are repaired with expoxy and microcement, and then they are tested by two methods, the ultrasonic pulse velocity method and the transfer function method. It is proved that the ultrasonic pulse velocity method is very valid for the evaluation of the effectiveness on expoxy repair, and the transfer function method is very applicable to evaluate the effectiveness on microcement repair.

  • PDF