• Title/Summary/Keyword: non-destructive methods

검색결과 390건 처리시간 0.022초

비파괴 시험방법을 이용한 원목 내부결함 예측 및 분류의 계량화(計量化)에 관한 연구 (I) - 원목의 횡단방향을 중심으로 - (Study on Mensurability of Internal Defect Prediction and of Classification of Log by NDE(Non-Destructive Evaluation) (I) - Focused on Cross Direction of Log -)

  • 박헌;강은창;전성진;윤경섭
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권2호
    • /
    • pp.47-54
    • /
    • 1995
  • This study was to measure the properties of logs and classify them by non-destructive methods. The purpose of this experiment was focused at mensurability of logs by non-destructive methods. The non-destructive instrument, Stress-Wave Timer 239A which was made by Metriguard in U.S.A., was used. The stress wave velocities of log's cross direction were measured and compared with three different methods; 1. with hammer, 2. with hammer and D.B.H. meter, 3. with manufactured instrument. Number of used logs were seven logs, which were classified by naked eye into six groups; very severe rot, severe rot, mild rot & knot, mild rot & check, mild rot, sound log, and in diameter were into three groups; large(57.4cm), medium(36~41.2cm), small(28.9cm) log. The results, which were classified by mensurability with non-destructive methods, were followed; 1. The stress wave velocities were very different between rot and sound log. So it meant the possibility of mensurability of logs by non-destructive method even if high standard error. 2. The stress wave velocities decreased with checks more than with rots, which meant the checks affected speeds more. 3. The stress wave velocities increased with knot. 4. The velocities with manufactured instrument showed lower standard error, so more accurate results than other methods. Especially the required labour decreased from 3~4 to 2 persons. 5. Finally, the mensurability showed more accurate results and made the classification of logs scientific.

  • PDF

비파괴 방법을 이용한 목재의 부후 탐지 (Wood decay Detection by Non-destructive Methods)

  • 손동원;이동흡
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권4호
    • /
    • pp.74-81
    • /
    • 2004
  • 비파괴 시험 방법 중 초음파 방법을 이용하여, 목재의 열화상태를 진단하였다. 기초 자료로서, 목재 내 온도변화에 따른 초음파 전송속도의 변화, 목재 내 함수율변화에 따른 초음파 전송속도 변화, 목재 강제부후에 의한 중량감소와 초음파 전송속도 변화를 검토하였다. 또한 원목의 비파괴 시험 등을 수행하고, 초음파 전송속도에 근거한 부후분포도를 작성하여 고목재의 열화 진단을 하였다. 일련의 시험들을 통하여 비파괴 방법에 의한 목재 열화진단을 위한 데이터를 축적하고, 이를 고목재에 적용하여 목재 내부의 부후분포도를 작성함으로써 금후 고목재의 비파괴 방법에 의한 부후탐지의 가능성을 검토하였다.

욕실 타일 하자에 대한 비파괴 조사 방법에 관한 연구 (A Study on the Non-Destructive Investigation Method of Tile Defect in the Bathroom)

  • 정기태;김범수;이정훈;송제영;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.209-210
    • /
    • 2017
  • Recently, bathroom tile defects in households are occurring more frequently. Until now, the destructive investigation method has been required to analyze tile defects. This study proposes a non-destructive using a thermal emission camera imaging as a possibly more precise method of investigating tile failure compared to previous existing methods.

  • PDF

충격공진시험을 이용한 다양한 공극률을 가진 투수성 아스팔트 혼합물의 동탄성계수 변화 측정에 관한 연구 (Study for Dynamic Modulus Change Measurement of Permeable Asphalt Mixtures with Various Porosity using Non-Destructive Impact Wave)

  • 장병관;양성린;문성호
    • 한국도로학회논문집
    • /
    • 제15권3호
    • /
    • pp.65-74
    • /
    • 2013
  • PURPOSES: This study is to evaluate the dynamic modulus changes of permeable asphalt mixtures by using non-destructive impact testing method and to compare the dynamic moduli of permeable asphalt mixtures through repeated freezing and thawing conditions. METHODS: For the study, non-destructive impact testing method is used in order to obtain dynamic modulus of asphalt specimen and to confirm the change of dynamic modulus before and after freezing and thawing conditions. RESULTS : This study has shown that the dynamic moduli of asphalt concrete specimens consisting of 10%, 15% and 20% porosity are reduced by 11.851%, 1.9564%, 24.593% after freezing and thawing cycles. CONCLUSIONS : Non-destructive impact testing method is very useful and has repeatability. Specimen with 15% porosity has high durability than others.

A Review on Meat Quality Evaluation Methods Based on Non-Destructive Computer Vision and Artificial Intelligence Technologies

  • Shi, Yinyan;Wang, Xiaochan;Borhan, Md Saidul;Young, Jennifer;Newman, David;Berg, Eric;Sun, Xin
    • 한국축산식품학회지
    • /
    • 제41권4호
    • /
    • pp.563-588
    • /
    • 2021
  • Increasing meat demand in terms of both quality and quantity in conjunction with feeding a growing population has resulted in regulatory agencies imposing stringent guidelines on meat quality and safety. Objective and accurate rapid non-destructive detection methods and evaluation techniques based on artificial intelligence have become the research hotspot in recent years and have been widely applied in the meat industry. Therefore, this review surveyed the key technologies of non-destructive detection for meat quality, mainly including ultrasonic technology, machine (computer) vision technology, near-infrared spectroscopy technology, hyperspectral technology, Raman spectra technology, and electronic nose/tongue. The technical characteristics and evaluation methods were compared and analyzed; the practical applications of non-destructive detection technologies in meat quality assessment were explored; and the current challenges and future research directions were discussed. The literature presented in this review clearly demonstrate that previous research on non-destructive technologies are of great significance to ensure consumers' urgent demand for high-quality meat by promoting automatic, real-time inspection and quality control in meat production. In the near future, with ever-growing application requirements and research developments, it is a trend to integrate such systems to provide effective solutions for various grain quality evaluation applications.

콘코리트 성분분석을 위한 비파괴분석방법 (Non-destructive Inspection Methods for Componential Analysis of Concrete)

  • 김전상지;안태호;어본건인
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.933-936
    • /
    • 2006
  • Many non-destructive inspection methods have recently been developed for concrete structures. However, these methods can obtain only physical information of concrete, such as crack depth, delamination or position of reinforcement etc. near its surface. If chemical information is required, sampling and componential analyses may be earned out. Non-destructive method that can detect deterioration factors such as carbonation, chloride content or sulfate attack would be an outstanding innovation in inspection methodologies. In this research, near-infrared spectroscopy and X-ray fluorescence analysis were applied for componential analysis for concrete. These methods are very effective compared to traditional methods, therefore, working efficiency and maintenance cost will be improved.

  • PDF

비파괴적 연속압입시험 기법을 응용한 구조용 강의 소성 물성 평가 (Evaluation of Flow Properties of Steel Using Advanced Indentation System)

  • 장재일;손동일;최열;박순찬;권동일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 2002
  • The tensile properties of materials can be obtained just in accordance with conventional tensile testing methods which are described in several standards. However, the standard testing methods cannot be applicable due to the destructive testing procedure and specimen size requirement for some cases including on-service facility materials. Therefore, simple, non-destructive and advanced indentation technique was proposed. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. In this paper, the research trend of non-destructive evaluation of tensile properties using advanced indentation system and its application fields are reviewed and discussed.

  • PDF

재생골재 콘크리트의 강도 조기추정 및 비파괴실험 적용성에 관한 연구(II) -제 2보- 비파괴시험 (A Study on the Application of Early Estimation Methods and Non-Destructive Testing for the Strength of Recycled Aggregate Concrete(II) -Part 2 : Non-Destructive Testing-)

  • 윤기원;최청각;한천구;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.61-64
    • /
    • 1993
  • This study is aimed to analyze the influencing factor on the non-destructive testing by measuring rebound number of schmidt hammer and ultrasonic pulse velocity according to the variation of recycled aggregate kinds. And this study is to provide the reference data on application of practical use.

  • PDF

기계 구조물의 안정성 평가를 위한 레이저 초음파법 적용 (A Mechanic Structure Safety Evaluation Using Laser-Based Ultrasonics Application)

  • 김재열;송경석;김창현;고명수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.174-179
    • /
    • 2003
  • Non-destructive test on the size and depth of cracks has been required for the safety evaluation of structures. Ultrasonic method based on laser techniques is one of the most popular non-destructive methods which overwhelm PZT based tests. In the present paper, ultrasonic was generated by high powered Q switching Nd:YAG pulse laser. Experiments were carried out using Fabry-Perot interferometer which was intensively discussed in the present study.

  • PDF

균열 주입부의 비파괴 검사에 의한 주입효과 판정에 관한 연구 (Non-destructive Testing Methods to Evaluate the Effectiveness of Crack Repair Using Expoxy and Microcement)

  • 최홍식;이시우;이호범;송영철;방기성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.841-846
    • /
    • 2002
  • Development on non-destructive testing methods were performed to evaluate the effectiveness of crack repair for test beams induced a crack. Cracked beams are repaired with expoxy and microcement, and then they are tested by two methods, the ultrasonic pulse velocity method and the transfer function method. It is proved that the ultrasonic pulse velocity method is very valid for the evaluation of the effectiveness on expoxy repair, and the transfer function method is very applicable to evaluate the effectiveness on microcement repair.

  • PDF