• Title/Summary/Keyword: non-destructive method

Search Result 753, Processing Time 0.028 seconds

Diagnosis of Carburized Degradation in Cracking Tube by Ultrasonic Wave (초음파에 의한 열분해관의 침탄열화도 진단)

  • Kim, C.G.;Kim, S.T.;Cho, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.5
    • /
    • pp.381-388
    • /
    • 1998
  • The ultrasonic method, which is well known as non-destructive test method, is widely used to evaluate the material damage caused by degradation practically. However, this method is just used for measuring the crack size and the thickness loss of tube. The purpose of this study is to investigate the applicability of the ultrasonic technique for the evaluation of carburized material and to suggest the correlations between the ultrasonic characteristics and carburized degradation. The miniaturized specimens($40{\times}20{\times}6.3mm$) are adopted from the HK-40 (25Cr-20Ni-0.4C) centrifugal cast tube after carburization treatment. Carburization was carried at $1200^{\circ}C$ by the pack method. The results of ultrasonic test present that the longitudinal wave velocity increased with the increase of carburized depth. The correlation between the longitudinal wave velocity and carburization was changed with the density and Young's modulus. Therefore, the average velocity in the materials carburized for 336 hours and the unused one were 5,840 m/s and 5,755 m/s at 5 MHz, respectively. With the obtained results from this study, it can be recognized that the technique using the ultrasonic velocity property is very useful method to evaluate the degree of carburized material non-destructively.

  • PDF

Analysis of the Marginal and Internal Fit of Dental Zirconia Core Using Optical Coherence Tomography(OCT) (광간섭단층영상기를 이용한 치과용 지르코니아 코어의 적합도 분석)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.240-247
    • /
    • 2012
  • Marginal and internal fit is an important part of the longevity of dental restorations. The purpose of this study was to analysis the marginal and internal fit of zirconia core by dental CAD/CAM system using innovative and non-destructive methods such as optical coherence tomography(OCT) and compare with conventional method such as silicone replica technique(SRT). Ten dental stone models of abutment of maxillary right central incisal were manufactured and scanned. Ten zirconia cores were fabricated with commercial CAD/CAM system. To measure the marginal and internal fit of each sample, five point of fitness were measured using 2 different methods(OCT and SRT). Statistical analysis was performed using independent sample t-test(${\alpha}$=0.05). OCT and SRT groups were not significantly different(P>0.05). By this results, analysis the fitness of dental restorations using OCT were acceptable measuring method.

Development of 3D Petroglyph VR Contents based on Gesture Recognition (동작인식기반의 3D 암각화 VR 콘텐츠 구현)

  • Jung, Young-Kee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Petroglyphs is an essential part of the worldwide cultural heritage since it plays a key role for the comprehension of prehistoric communities previous to writing. nowadays 3D data are a critical component to permanently record the form of important cultural heritage so that they might be passed down to future generations. Recent 3D scanning technologies allow the generation of very realistic 3D model that can be used for multimedia museum exhibitions to attract the users into the 3D world. In this paper, we develop the 3D petroglyph VR contents based on a novel gesture recognition method. The proposed gesture recognition method can recognizes the movements of the user using 3D depth sensor by comparing with the pre-defined movements. Also this paper presents new approaches for 3D petroglyphs data recording using 3D scanning technology as accurate and non-destructive tools.

Impact Source Location on Composite CNG Storage Tank Using Acoustic Emission Energy Based Signal Mapping Method (음향방출 에너지 기반 손상 위치표정 기법을 이용한 복합재 CNG 탱크의 충격 신호 위치표정)

  • Han, Byeong-Hee;Yoon, Dong-Jin;Park, Chun-Soo;Lee, Young-Shin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • Acoustic emission (AE) is one of the most powerful techniques for detecting damages and identify damage location during operations. However, in case of the source location technique, there is some limitation in conventional AE technology, because it strongly depends on wave speed in the corresponding structures having heterogeneous composite materials. A compressed natural gas(CNG) pressure vessel is usually made of carbon fiber composite outside of vessel for the purpose of strengthening. In this type of composite material, locating impact damage sources exactly using conventional time arrival method is difficult. To overcome this limitation, this study applied the previously developed Contour D/B map technique to four types of CNG storage tanks to identify the source location of damages caused by external shock. The results of the identification of the source location for different types were compared.

Evaluation of Firmness and Sweetness Index of Tomatoes using Hyperspectral Imaging

  • Rahman, Anisur;Faqeerzada, Mohammad Akbar;Joshi, Rahul;Cho, Byoung-Kwan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.44-44
    • /
    • 2017
  • The objective of this study was to evaluate firmness, and sweetness index (SI) of tomatoes (Lycopersicum esculentum) by using hyperspectral imaging (HSI) in the range of 1000-1400 nm. The mean spectra of the 95 matured tomato samples were extracted from the hyperspectral images, and the reference firmness and sweetness index of the same sample were measured and calibrated with their corresponding spectral data by partial least squares (PLS) regression with different preprocessing method. The results showed that the regression model developed by PLS regression based on Savitzky-Golay (S-G) second-derivative preprocessed spectra resulted in better performance for firmness, and SI of tomatoes compared to models developed by other preprocessing methods, with correlation coefficients (rpred) of 0.82, and 0.74 with standard error of prediction (SEP) of 0.86 N, and 0.63 respectively. Then, the feature wavelengths were identified using model-based variable selection method, i.e., variable important in projection (VIP), resulting from the PLS regression analyses and finally chemical images were derived by applying the respective regression coefficient on the spectral image in a pixel-wise manner. The resulting chemical images provided detailed information on firmness, and sweetness index (SI) of tomatoes. Therefore, these research demonstrated that HIS technique has a potential for rapid and non-destructive evaluation of the firmness and sweetness index of tomatoes.

  • PDF

HCP Evaluation Considering Property of Cement Mortar and Steel Corrosion (건조 상태의 시멘트 모르타르 특성과 철근 부식량을 고려한 HCP 평가)

  • Ryu, Hwa-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.113-120
    • /
    • 2017
  • HCP(Half Cell Potential) method has been widely used since it is recognized as a efficient NDT(Non Destructive Technique) for corrosion detection. This work is for an evaluation of relation between corrosion amount and measured HCP in dried condition through ICM(Impressed Current Method) for accelerating corrosion. For the work, cement mortar specimens with three w/c ratios and four cover depths are prepared, and corrosion test based on ICM is performed for 6 hours, 18 hour, and 42 hours with constant 20V of electrical charge, respectively. From the test, corrosion amount increases with reduced cover depth, increasing w/c ratio, and extended corrosion period, where corrosion amount is evaluated to linearly increases with measured HCP in dried condition. In order to evaluate corrosion amount through measured HCP, the measured HCP level is firstly determined and then corrosion amount is to be compared with measured HCP, which is evaluated to be more reasonable with higher C.O.V.

Comparative Studies on Cotton Seed Germinability with Tetrazolium Viability Test and X-ray Contrast Methods

  • Na, Young-Wang;Shim, Sang-In;Chung, Jung-Sung;Rho, Il-Rae;Kim, Seok-Hyeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.188-193
    • /
    • 2014
  • Seed viability testing provides valuable information for assessing seed lot germinability. However, most testing methods require destruction of seed prior to test. Because the dissected seeds for viability test cannot be used further evaluation, the nondestructively X-ray photography technique that can be applied for the evaluation of seed quality has been developed. In order to know the validity and accuracy of X-ray photography technique in seed evaluation test that conducted to remove the abnormal seed from a seed lot, we have compared the results from tetrazolium viability test, germination test and X-ray contrast method in cotton. Metallic salts treatment increased the efficiency of X-ray photographic method by enhancing the penetration of X-ray in abnormal or damaged seeds rather than normal seeds that have strong and well-organized tissues in seed. Cotton seeds presoaked for 16 hr in distilled water followed by soaking into metallic salt solution (5% NaI in water) for 60 min were easily classified seeds into dead seed and viable seed based on the radiography images obtained by X-ray radiation. We concluded that soft X-ray photography was reliable to find out the various defective characters due to heat and mechanical damage of seeds.

ESTIMATION OF SUGAR AND REDUCING SUGAR IN MOLASSES USING NEAR INFRARED REFLECTANCE SPECTROSCOPY

  • Mehrotra, Ranjana;Gupta, Alka;Tewari, Jagdish;Varma, S.P.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1258-1258
    • /
    • 2001
  • Estimation of sugar and reducing sugar content in molasses is very important task in sugar refineries. Conventional methods of determination of sugar content in molasses samples are highly time consuming and employ hazardous chemicals. Due to the physical properties of molasses, probability of error in conventional analytical techniques is high. These methods have proven to be inefficient for a process control in any sugar industry. Hence development of a rapid, inexpensive, physical and also accurate method for sugar determination in molasses will be highly useful. Near Infrared spectroscopy is being widely used worldwide as an analytical technique in food industry. The technique offers the advantage of being non-destructive and rapid. The present paper highlights the potential of near infrared reflectance spectroscopy as a rapid and automated analytical technique for determination of sugar and reducing sugar content in molasses. A number of molasses samples were collected during and after the sugar season from Havana Sugar Industry, Havana. The samples were chosen so as to obtain a wide range of concentration of sugar and reducing sugars. This was done in order to achieve a good calibration curve with widely spread data points. These samples were scanned in the region of 1100 - 2500 nm in diffuse reflectance mode. An indigenous ELICO NIR spectrophotometer, modified according to the requirements of sugar industry was used for this purpose. Each sample was also analyzed simultaneously by standard chemical methods. Chemical values were taken as reference for near infrared analysis. In order to obtain the most accurate calibration for the set of samples, various mathematical treatments were employed. Partial Least Square method was found to be most suitable for the analysis. A comparison is made between the actual values (chemical values) and the predicted values (NIR values). The actual values agree very well with the predicted values showing the accuracy of the technique. The validity of the technique is checked by predicting the concentration of sugar in unknown molasses samples using the calibration curve. The present investigation assesses the feasibility of the technique for on-line monitoring of sugars present in molasses in sugar industries.

  • PDF

Yoke Tube Crack Inspection by Using Acoustic Resonance Spectral Analysis (음향 공진 스펙트럼 분석을 통한 요크 튜브 크랙 검사)

  • Yeom, Woo-Jung;Hong, Yeon-Chan;Kim, Jin-Young;Kang, Joonhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.108-114
    • /
    • 2018
  • Due to the development of nondestructive testing techniques, methods of inspecting cracks in mechanical parts have drawn attentions. Among various non-destructive testing methods the acoustic resonance method which analyzes the natural frequencies has been developed into a technique suitable for the prompt judgements of the existence of the defects in the mechanical parts. In this study, we investigated the crack inspection technique to examine the cracks in the yoke tubes by using the acoustic resonance method and realized the system to quickly detect the cracks. A 24bit ADC circuit and an MCU were installed for the smooth data collection, and a TCP / IP communication interface was configured for the data communication with PC. We used a microphone as a sensor measuring the vibrations. We constructed an analysis software to obtain the frequency spectra of the vibrations, to find the existence of the cracks, and to feedback to the user. Tests were conducted using the yoke tubes manufactured in the real industrial field. The tests were successfully conducted to distinguish the good products from the defective (cracked) products and confirmed that they can be employed in the actual industrial field.

Propagation characteristics of ultrasonic guided waves in tram rails

  • Sun, Kui;Chen, Hua-peng;Feng, Qingsong;Lei, Xiaoyan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.435-444
    • /
    • 2020
  • Ultrasonic guided wave testing is a very promising non-destructive testing method for rails, which is of great significance for ensuring the safe operation of railways. On the basis of the semi-analytical finite element (SAFE) method, a analytical model of 59R2 grooved rail was proposed, which is commonly used in the ballastless track of modern tram. The dispersion curves of ultrasonic guided waves in free rail and supported rail were obtained. Sensitivity analysis was then undertaken to evaluate the effect of rail elastic modulus on the phase velocity and group velocity dispersion curves of ultrasonic guided waves. The optimal guided wave mode, optimal excitation point and excitation direction suitable for detecting rail integrity were identified by analyzing the frequency, number of modes, and mode shapes. A sinusoidal signal modulated by a Hanning window with a center frequency of 25 kHz was used as the excitation source, and the propagation characteristics of high-frequency ultrasonic guided waves in the rail were obtained. The results show that the rail pad has a relatively little influence on the dispersion curves of ultrasonic guided waves in the high frequency band, and has a relatively large influence on the dispersion curves of ultrasonic guided waves in the low frequency band below 4 kHz. The rail elastic modulus has significant influence on the phase velocity in the high frequency band, while the group velocity is greatly affected by the rail elastic modulus in the low frequency band.