• Title/Summary/Keyword: non-destructive investigation

Search Result 82, Processing Time 0.036 seconds

A TOF-SIMS Study of Artificially Photoaged Silk Fabrics

  • Lee, Boyoung;Ryu, Hyoseon;Park, Sohyun
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2018
  • Scientific investigation of cultural heritage can provide important information to understand the context of the object. To know the characteristics of the material is also an essential part of objects management and conservation. However, the identification and characterization of organic dyes used in archaeological and historical textiles are often limited by the restrictions in sampling. To cope with the difficulties, applications of high-performance techniques of surface analysis, such as Time of Flight-Secondary Ion Mass Spectra (TOF-SIMS) could be considered as a non or micro-destructive option. This study aims to examine the applicability of TOF-SIMS analysis to the detection of organic dyes from historical textiles. A group of silk fabrics dyed with vegetable dyes were artificially photo-aged to different degrees and analyzed with TOF-SIMS. Molecular and fragment ions from indigo were successfully detected from the aged samples; however, only some fragment ions were observed from gardenia and safflower dyed fabrics. Further studies with actual historical samples with extended examination scope would be necessary to assess the validity of this technique.

A Study of the Relation Between Nozzle Geometry, Internal flow and Sprays Characteristics in Diesel Fuel Injection Systems

  • Payri, Raul;Molina, S.;Salvador, F.J.;Gimeno, J.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1222-1235
    • /
    • 2004
  • This study examines the influence of geometry on the internal flow and macroscopic behavior of the spray in Diesel nozzles. For this investigation, two bi-orifice nozzles were employed: one cylindrical and one conical. The first step is to use a non-destructive characterization method which is based on the production of silicone moulds so that the precise internal geometry of the two nozzles can be measured. At this stage the nozzles have been characterized dimensionally and therefore the internal flow can be studied using CFD calculations. The results gained from this experiment make it possible also to ascertain the critical cavitation conditions. Once the critical cavitation conditions have been identified, the macroscopic parameters of the spray can be studied in both cavitating and non-cavitating conditions using a test rig pressurized with nitrogen and with the help of a image acquisition system and image processing software. Consequently, research can be carried out to determine the influence that cavitation has on macroscopic spray behavior. From the point of view of the spray macroscopic behavior, the main conclusion of the paper is that cavitation leads to an increment of the spray cone angle. On the other hand, from the point of view of the internal flow, the hole outlet velocity increases when cavitation appears. This phenomenon can be explained by the reduction in the cross section of the liquid phase in the outlet section of the hole.

APPLICATION OF BENFOR'S EQUATIONS TO THE PROBLEM OF "SEEING THROUGH LAYERS"

  • Krivoshiev, Georgi -P.;Chalucova, Raina-P.;Dahm, Donald-J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1132-1132
    • /
    • 2001
  • This work is a further development of the method created by G. Krivoshiev in 1996 for elimination of peel interference and prediction of fruit flesh optical density. In this investigation, as it was earlier, the objects are observed as being structured by three successive layer “AlongrightarrowOlongrightarrowB” denoting “peel-flesh-peel”. In the first version of the method the transmittances of the surface layers A and B were measured according to Kubelka-Munk theory by means of their diffuse reflectance. At that the overall transmittance T was approximated in the form of a multiplication approximation being valid for plane-parallel layers of a non-scattering material. In this work this approximation was done away with applying the theory of discontinuum, respectively Benfor's equations. As a result two mathematical models were created for non-destructive prediction of fruit flesh optical density. These models are different from the ones based solely on Kubelka-Munk theory, the destruction being marked by the terms 1n (1 - $R_{A}R_{0}$) and 1n (1 - $R_{A}R_{B}$), where: $R_{A}$ and $R_{B}$ are reflectance values for the surface layers A and B; $R_{0}$ is the average reflectance of the internal layer that could be obtained empirically by means of a preliminary measurement of sufficiently large number of physically peeled fruits of a given species and variety.

  • PDF

Electromagnetic Survey in Korea (한국의 전자탐사 현황)

  • Cho, Dong-Heng
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.427-440
    • /
    • 2006
  • Electromagnetic(EM) survey has been in use for over a half century as a standard routine for, mineral exploration in many parts of the world. But EM survey work and serious research effort were initiated in Korea only as late as in early 1980s, largely inspired by four pioneers who did their graduate studies in the U.S.A. in 1970s. Nevertheless domestic achievements in the field of EM survey are remarkable in the last two decades: the field operations and related interpretational skills appear to have reached a global standard, even compared with the most advanced in other countries, virtually in a whole spectrum of the method which includes magneto-tellurics(MT), Controlled Source Audio-frequency Magneto-tellurics(CSAMT), geomagnetic sounding, small loop survey systems, Very Low Frequency(VLF), Ground Penetrating Radar(GPR), time domain surveys, and noise analysis. Besides mineral exploration, EM survey has been applied in Korea to hydrogeology, geotechnical engineering, non-destructive investigation of structures, unexplored ordnance(UXO) investigation, environmental monitoring, and archaeological investigation as well. Now that original contributions of several Korean geophysicists are found even in new frontiers such as high-frequency EM survey, investigation in time-domain EM field for buried metal objects and structures, and also modem data inversion scheme, it is duly hoped that they make some technical breakthrough to unravel still entangled knots of EM survey method in a forseeable future.

Study on Electrical Resistivity Pattern of Soil Moisture Content with Model Experiments (토양의 함수율에 따른 전기비저항 반응 모형 실험 연구)

  • Ji, Yoonsoo;Oh, Seokhoon;Lee, Heui Soon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.2
    • /
    • pp.79-90
    • /
    • 2013
  • Geophysical investigation in non-destructive testing is economically less expensive than boring testing and providing geotechnical information over wide-area. But, it provides only limited geotechnical information, which is hardly used to the design. Accordingly, we performed electrical resistivity experiments on large scale of soil model to analyze the correlation between electrical resistivity response and soil water contents. The soils used in the experiments were the Jumunjin standard sand and weathered granite soil. Each soil particle size distribution and coefficient of uniformity of experimental material obtained in the experiments were maintained in a state of the homogeneous. The specifications of the model used in this study is $160{\times}100{\times}50$(cm) of acrylic, and each soil was maintained at the height 30 cm. The water content were measured using the 5TE sensors (water contents sensors) which is installed 7 ~ 8 cm apart vertically by plugging to floor. The results of the resistivity behavior pattern for Jumunjin standard sand was found to be sensitive to the water content, while the weathered granite soil was showing lower resistivity over the time, and there was no significant change in behavior pattern observed. So, it results that the Jumunjin standard sand's particle current conduction was better than the weathered granite soil's particle through contact with the distilled water. This lab test was also compared with the result of a test bed site composed of similar weathered soil. It was confirmed that these experiments were underlying research of non-destructive investigation techniques to improve the accuracy to estimate the geotechnical parameter.

Investigation of seismic safety of a masonry minaret using its dynamic characteristics

  • Basaran, Hakan;Demir, Ali;Ercan, Emre;Nohutcu, Halil;Hokelekli, Emin;Kozanoglu, Celalettin
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.523-538
    • /
    • 2016
  • Besides their spiritual significance, minarets are humanity's cultural heritage to the future generations due to their historical and architectural attraction. Currently, many historical masonry minarets are damaged and destroyed due to several reasons such as earthquakes and wind. Therefore, safety of these religiously significant buildings needs to be thoroughly investigated. The utmost care must be taken into account while investigating these structures. Our study investigated earthquake behavior of historical masonry minaret of Haci Mahmut Mosque. Destructive and non-destructive tests were carried out to determine earthquake safety of this structure. Brick-stone masonry material properties of structure were determined by accomplishing ultrasonic wave velocity, Schmidt Hammer, uniaxial compression (UAC) and indirect tension (Brazilian) tests. Determined material properties were used in the finite element analysis of the structure. To validate the numerical analysis, Operational Modal Analysis was applied to the structure and dynamic characteristics of the structure were determined. To this end, accelerometers were placed on the structure and vibrations due to environmental effects were followed. Finite element model of the minaret was updated using dynamic characteristics of the structure and the realistic numerical model of the structure was obtained. This numerical model was solved by using earthquake records of Turkey with time history analysis (THA) and the realistic earthquake behavior of the structure was introduced.

Conservation Status Diagnosis of Mural Painting in Geungnakjeon Hall of Daewonsa Temple, Boseong: Avalokitesvara Bodhisattva Mural and Buddhist Monk Bodhidharma Mural

  • Lee, Hwa Soo;Eom, Tae Ho;Jee, Bong Goo;Yi, Sun Jo;Yu, Yeong Gyeong;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.38 no.4
    • /
    • pp.314-326
    • /
    • 2022
  • Investigation of conservation status, optical survey, infrared thermography, and ultrasonic examination were performed on Avalokitesvara Bodhisattva mural and Buddhist Monk Bodhidharma mural to determine the conservation status and physical properties. As a result of investigation of conservation status, the types of damage are largely divided into the wall and finishing layer damage, painting layer degradation, damage due to restoration materials, stains and contamination, and biological damage. As a result of the optical survey, drawing, stains, and repainted site were confirmed. Result of the infrared thermography, the delamination of the finishing layer was confirmed, and some locations and shapes of the wooden lath inside the wall were identified. The result of the 3D scanning, the deviation, and the separation of the wall was confirmed. As a result of ultrasonic examination, it was confirmed that the physical properties of the mural were identified and the ultrasonic speed was relatively low due to physical damage such as delamination and exfoliation of the finishing layer and cracking. Ultrasonic speed values were also high in some wall cracks or delamination, and it was confirmed by the infrared thermography results that the wooden lath inside the wall was located in those parts. It was possible to understand that the wooden lath inside the walls affects the ultrasonic speed during the ultrasonic examination. Therefore, management through periodic inspection of the relevant elements is necessary, and a countermeasure for damage that may occur in the future should be prepared along with intensive monitoring of the major damage identified in this diagnosis result.

Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography (열유도 장치와 적외선 열화상을 이용한 철근부식탐지 비파괴 평가기법)

  • Kwon, Seung Jun;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.40-48
    • /
    • 2012
  • Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the embedded steel from concrete surface, which is integrated with an IR camera. Concrete samples with different cover depths are prepared. Each sample is embedded with a single rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enable heat induction from one surface and IR imaging from the other simultaneously. The impressed current (IC) method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during the entire heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded sample shows higher rates of heating and cooling than those of the non-corroded sample. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.

Measurement of Inner Defects and out of Plane Deformation of Pressure Vessel in Piping of Circulation System Using Shearography (전단간섭법을 이용한 배관 순환 시스템에서의 압력용기 내부결함 및 면외변형 측정)

  • Kang, Chan-Geun;Kim, Hyun-Ho;Jung, Hyun-Il;Choi, Tae-Ho;Jung, Hyun-Chul;Kim, Kyeong-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.349-355
    • /
    • 2014
  • Wall thinning defects can occur in the pressure vessels used in a variety of industries. Such defects are related to the flow velocity. Considering the fact that such vessels constitute up to 70 or 80% of the plant structures in a power plant, it is important to measure internal defects as part of a safety evaluation. In this study, optical measurement were applied in a non-destructive evaluation using shearography to ensure the safety and improve the reliability of a power plant through the non-contact, non-destructive evaluation of pressure vessels. In order to verify whether the pressure vessels contained faults, experimental and analytical investigation were conducted to measure any internal defects and out-of-plane deformation from inner temperature changes and pressure changes in the piping of the circulation system. The most important factors in this research were the thickness, width, and length of a defect. An increase in these could confirm an increase in the deformation. Thus, internal defects in a pressure vessel were measured using shearography, which made it possible to ensure the reliability and integrity of the pipe.

Evaluation of the change in Geotechnical properties due to the Construction of Civil engineering Structure using HWAW Method (HWAW방법을 이용한 토목구조물 건설에 따른 하부 지반 물성 변화 평가)

  • Park, Hyung-Choon;Noh, Hee-Kwan;Park, Byeong-Cheol;Kim, Min-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.182-187
    • /
    • 2010
  • In the various fields of Civil Engineering, shear modulus is very important input parameters to design many constructions and to analyze ground behaviors. In general, a shear wave velocity profile is decided by various experiments before constructing a structure and, analysis and design are carried out by using decided shear wave velocity profile of the site. However, if civil structures are started to construct, the shear wave velocity will be increased more than before constructions because of confining pressure increase by the load of structure. The evaluation of the change in shear wave velocity profile is used very importantly when maintaining, managing, reinforcing and regenerating existing structures. In this study, a non-destructively geotechnical investigation method by using the HWAW method is applied to an evaluation of change in properties of the site according to construction. Generally, the space for experiments is narrow when underground of existing or on-going structures is evaluate, so a prompt non-destructive experiment is required. This prompt non-destructive experiment would be performed by various in-situ seismic methods. However, most of in-situ seismic methods need more space for experiments, so it is difficult to be applied. The HWAW method using the Harmonic wavelet transforms, which is based on time-frequency analysis, determines shear wave velocity profile. It consists of a source as well as short receiver spacing that is 1~3m, and is able to determine a shear wave velocity profile from surface to deep depth by one test on a space. As the HWAW method uses only the signal portion of the maximum local signal/noise ratio to determine a profile, it provides reliability shear modulus profile such as under construction or noisy situation by minimizing effects of noise from diverse vibration on a construction site or urban area. To estimate the applicability of the proposed method, field tests were performed in the change of geotechnical properties according to constructing a minimized modeling bent. Through this study, the change of geotechnical properties of the site was effectively evaluated according to construction of a structure.

  • PDF