• Title/Summary/Keyword: non-destructive identification

Search Result 57, Processing Time 0.033 seconds

Power spectral density method performance in detecting damages by chloride attack on coastal RC bridge

  • Mehrdad, Hadizadeh-Bazaz;Ignacio J., Navarro;Victor, Yepes
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • The deterioration caused by chloride penetration and carbonation plays a significant role in a concrete structure in a marine environment. The chloride corrosion in some marine concrete structures is invisible but can be dangerous in a sudden collapse. Therefore, as a novelty, this research investigates the ability of a non-destructive damage detection method named the Power Spectral Density (PSD) to diagnose damages caused only by chloride ions in concrete structures. Furthermore, the accuracy of this method in estimating the amount of annual damage caused by chloride in various parts and positions exposed to seawater was investigated. For this purpose, the RC Arosa bridge in Spain, which connects the island to the mainland via seawater, was numerically modeled and analyzed. As the first step, each element's bridge position was calculated, along with the chloride corrosion percentage in the reinforcements. The next step predicted the existence, location, and timing of damage to the entire concrete part of the bridge based on the amount of rebar corrosion each year. The PSD method was used to monitor the annual loss of reinforcement cross-section area, changes in dynamic characteristics such as stiffness and mass, and each year of the bridge structure's life using sensitivity equations and the linear least squares algorithm. This study showed that using different approaches to the PSD method based on rebar chloride corrosion and assuming 10% errors in software analysis can help predict the location and almost exact amount of damage zones over time.

Calculus of the defect severity with EMATs by analysing the attenuation curves of the guided waves

  • Gomez, Carlos Q.;Garcia, Fausto P.;Arcos, Alfredo;Cheng, Liang;Kogia, Maria;Papelias, Mayorkinos
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.195-202
    • /
    • 2017
  • The aim of this paper is to develop a novel method to determine the severity of a damage in a thin plate. This paper presents a novel fault detection and diagnosis approach employing a new electromagnetic acoustic transducer, called EMAT, together with a complex signal processing method. The method consists in the recognition of a fault that exists within the structure, the fault location, i.e. the identification of the geometric position of damage, and the determining the significance of the damage, which indicates the importance or severity of the defect. The main scientific novelties presented in this paper is: to develop of a new type of electromagnetic acoustic transducer; to incorporate wavelet transforms for signal representation enhancements; to investigate multi-parametric analysis for noise identification and defect classification; to study attenuation curves properties for defect localization improvement; flaw sizing and location algorithm development.

Determination of Ethanol in Blood Samples Using Partial Least Square Regression Applied to Surface Enhanced Raman Spectroscopy

  • Acikgoz, Gunes;Hamamci, Berna;Yildiz, Abdulkadir
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.127-132
    • /
    • 2018
  • Alcohol consumption triggers toxic effect to organs and tissues in the human body. The risks are essentially thought to be related to ethanol content in alcoholic beverages. The identification of ethanol in blood samples requires rapid, minimal sample handling, and non-destructive analysis, such as Raman Spectroscopy. This study aims to apply Raman Spectroscopy for identification of ethanol in blood samples. Silver nanoparticles were synthesized to obtain Surface Enhanced Raman Spectroscopy (SERS) spectra of blood samples. The SERS spectra were used for Partial Least Square (PLS) for determining ethanol quantitatively. To apply PLS method, $920{\sim}820cm^{-1}$ band interval was chosen and the spectral changes of the observed concentrations statistically associated with each other. The blood samples were examined according to this model and the quantity of ethanol was determined as that: first a calibration method was established. A strong relationship was observed between known concentration values and the values obtained by PLS method ($R^2=1$). Second instead of then, quantities of ethanol in 40 blood samples were predicted according to the calibration method. Quantitative analysis of the ethanol in the blood was done by analyzing the data obtained by Raman spectroscopy and the PLS method.

Semantic crack-image identification framework for steel structures using atrous convolution-based Deeplabv3+ Network

  • Ta, Quoc-Bao;Dang, Ngoc-Loi;Kim, Yoon-Chul;Kam, Hyeon-Dong;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.17-34
    • /
    • 2022
  • For steel structures, fatigue cracks are critical damage induced by long-term cycle loading and distortion effects. Vision-based crack detection can be a solution to ensure structural integrity and performance by continuous monitoring and non-destructive assessment. A critical issue is to distinguish cracks from other features in captured images which possibly consist of complex backgrounds such as handwritings and marks, which were made to record crack patterns and lengths during periodic visual inspections. This study presents a parametric study on image-based crack identification for orthotropic steel bridge decks using captured images with complicated backgrounds. Firstly, a framework for vision-based crack segmentation using the atrous convolution-based Deeplapv3+ network (ACDN) is designed. Secondly, features on crack images are labeled to build three databanks by consideration of objects in the backgrounds. Thirdly, evaluation metrics computed from the trained ACDN models are utilized to evaluate the effects of obstacles on crack detection results. Finally, various training parameters, including image sizes, hyper-parameters, and the number of training images, are optimized for the ACDN model of crack detection. The result demonstrated that fatigue cracks could be identified by the trained ACDN models, and the accuracy of the crack-detection result was improved by optimizing the training parameters. It enables the applicability of the vision-based technique for early detecting tiny fatigue cracks in steel structures.

Identification of the Materials of the Decorative Pieces Excavated from Geumnyeongchong Tomb (금령총 출토 장식편 재질 규명)

  • Lee Gyuhye;Shin Seungchul;Gwak Hongin;Yang Seokjin
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.89-100
    • /
    • 2023
  • Museum collections are comprised of a variety of materials, and different scientific examinations are being conducted according to the types and production properties of the materials, but insufficient research has been carried out on ultra-small artifacts. To identify the material characteristics of the white ultra-small materials excavated from Geumnyeongchong tomb, this study carried out a wide range of non-destructive analyses (specific gravity, microscopy, nano-computed tomography (Nano-CT), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Raman spectroscopy) and compared the said artifacts with the Goryeo-era burial accessories examined in prior research. Non-destructive analysis confirmed the presence of aragonite, which mainly consists of calcium carbonate (CaCO3) as the constituent mineral, and identified the material used for the ornaments as the gemstone pearl based on its growth lines. This study concludes that pearls began to be used in the ancient Korean Peninsula in the 6th century. It is expected that scientific examinations of the white ultra-small artifacts will yield information about the social culture of the time.

Structural Diagnosis in Time Domain on Damage Size (손상크기에 따른 시간영역에서의 구조물 진단)

  • 권대규;임숙정;방두열;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.259-262
    • /
    • 2002
  • This paper provides the experimental verification of a non-destructive time domain approach to examine structural damage. Time histories of the vibration response of structure were used to identify the presence of damage. Damage in a structure cause changes in the physical coefficients of mass density, elastic modulus and damping coefficient. This paper examines the use of beam like structures with PVDF sensor and PZT actuator to perform identification of those physical parameters, and hence to detect the damage. Experimental results are presented from tests on cantilevered composite beams damaged at different location and with damage of different dimensions. It is demonstrated that the method can sense the presence of damage, and characterize the damage to a satisfactory precision.

  • PDF

Dynamic Characteristics of a Damaged Plate

  • Lee, Usik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1408-1416
    • /
    • 2001
  • It is very important to well understand the dynamic characteristics of damaged structures to successfully develop or to choose a most appropriate structural damage identification method (SDIM) as the means of non-destructive testing. In this pope., the dynamic equation of motion for damaged plates is derived by introducing a damage distribution function, which may characterize the effective state of structural damages. It is found that structural damages may induce the coupling between modal coordinates. The effects of damages on the vibration characteristics of a plate depending on their locations, sizes, and magnitudes are numerically investigated in a systematic way. The numerical investigations are also given to the effects of damage-induced modal coupling on the changes in vibration characteristics and to the minimum number of natural modes required to predict sufficiently accurate vibration characteristics of damaged plates.

  • PDF

Fault Detection of an Intelligent Cantilever Beam with Piezoelectric Materials

  • Kwon, Tae-Kyu;Lim, Suk-Jeong;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.97.2-97
    • /
    • 2002
  • A method for the non-destructive detection of damage using parameterized partial differential equations and Galerkin approximation techniques is presented. This method provides the theoretical and experimental verification of a nondestructive time domain approach to examine structural damage in smart structure. The time histories of the vibration response of structure were used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficient. This paper examines the beam-like structures with PVDF sensor and PZT actuator to perform identification of those physical parameters and to detect the...

  • PDF

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

Characterization of elastic properties of pultruded profiles using model updating procedure with vibration test data

  • Cunha, Jesiel;Foltete, Emmanuel;Bouhaddi, Noureddine
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.481-500
    • /
    • 2008
  • In this paper, a model updating technique in dynamics is used to identify elastic properties for pultruded GFRP-Glass Fiber Reinforced Plastic framed structural systems used in civil construction. Traditional identification techniques for composite materials may be expensive, while this alternative approach allows to identify several properties simultaneously, with very good precision. Furthermore, the procedure of a non-destructive type has a relatively simple implementation. Properties describing the mechanical behavior for beam and shell finite element modeling are identified. The used formulation is based on the minimization of eigensolution residuals. Important points concerning model updating procedures have been observed, such as the particular vibrational behavior of the test structure, the modeling strategies and the optimal placement of the sensors in the experimental procedure. Results obtained by experimental tests show the efficiency of the proposed procedure.