• Title/Summary/Keyword: non-continuum

Search Result 174, Processing Time 0.024 seconds

Boundary Control of Axially Moving Continua: Application to a Zinc Galvanizing Line

  • Kim Chang-Won;Park Hahn;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.601-611
    • /
    • 2005
  • In this paper, an active vibration control of a tensioned, elastic, axially moving string is investigated. The dynamics of the translating string are described with a non-linear partial differential equation coupled with an ordinary differential equation. A right boundary control to suppress the transverse vibrations of the translating continuum is proposed. The control law is derived via the Lyapunov second method. The exponential stability of the closed-loop system is verified. The effectiveness of the proposed control law is simulated.

Disjoining pressure of nanoscale thin film on solid substrate (고체 위의 박막에서의 분리압력 및 안정특성에 관한 연구)

  • Han, Min-sub
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1912-1915
    • /
    • 2007
  • The disjoining pressure is critical in modeling the transport phenomena in small scales. They are very useful in characterizing the non-continuum effects that are not negligible in heat and mass transports in the film of less than submicro-scales. We present he disjoining pressure of thin film absorbed on solid substrate using Molecular Dynamics Simulation (MD). The disjoining pressure with respect to the film thickness is accurately calculated in the resolution of a molecular scale. The characteristics of the pressure are discussed regarding the molecular nature of the fluid system like molecular diameter and intermolecular interaction. Also, the MD results are compared with those based on the macroscopic approximation of the slab-like density profile. Significant discrepancy is observed when the effective film thickness is less than several molecular diameter

  • PDF

Modelling of the effects of alkali-aggregate reaction in reinforced concrete structures

  • Pietruszczak, S.;Ushaksaraei, R.;Gocevski, V.
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.627-650
    • /
    • 2013
  • This paper deals with application of a non-linear continuum model for reinforced concrete affected by alkali-aggregate reaction (AAR) to analysis of some nuclear structures. The macroscopic behaviour of the material affected by AAR is described by incorporating a homogenization/averaging procedure. The formulation addresses the main stages of the deformation process, i.e., a homogeneous deformation mode as well as that involving localized deformation, associated with formation of macrocracks. The formulation is applied to examine the mechanical behaviour of some reinforced concrete structures in nuclear power facilities located in Quebec (Canada). First, a containment structure is analyzed subjected to 45 years of continuing AAR. Later, an inelastic analysis is carried out for the spent fuel pool taking into account the interaction with the adjacent jointed rock mass foundation. In the latter case, the structure is said to be subjected to continuing AAR that is followed by a seismic event.

Fatigue Life Prediction of Weldment with Damage Mechanics (손상역학을 이용한 용접부의 피로수명예측)

  • Chung, Heung-Jin;Yoo, Byoung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.60-64
    • /
    • 2008
  • According to previous research, welding-induced stress in steel structures can significantly affect the fatigue behaviour; it produces initial damage of weldiug part of structure locally and residual stresses reduce the fatigue strength after welding precess. In this study, through continuum damage mechanics, we can estimate the weldiug damage using the stress and strain history during welding process and the effect of welding residual stress for assessment of fatigue life. The variation of welding-induced stresses and strains need be traced precisely in advance for a reliable weldiug damage assessment. In this study, a damage and fatigue analysis techniques for steel structures with welding-induced residual stress are presented. First, We calculate the history of temperature according with welding process. And residual stress with a welding thermal history was evaluated by non-linear thermal stress analysis. Secondly, welding damage and fatigue life are estimated with kinetic damage law.

  • PDF

Numerical analysis of the continuous casting process in the presence of thermo-solutal convection (열농도대류를 고려한 연속주조공정의 수치해석)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.445-456
    • /
    • 1997
  • Continuous casting process is numerically analyzed using the continuum model in a non-orthogonal coordinate system. Flow damping in the mush is modeled by combining the viscosity dependence on liquid fraction in dilute mush and the permeability dependence on liquid fraction in concentrated mush. The effect of turbulence is indirectly considered by effective diffusivity determined elsewhere by experiment. The main objective is to investigate the effects of casting parameters such as casting speed and tundish superheat on the distribution of surface temperature, shell thickness, metallurgical length and centerline segregation. Some of the computed results are compared with available experiments, and reasonable agreements are obtained.

"Dust, Ice, and Gas In Time" (DIGIT) Herschel observations of GSS30-IRS1

  • Je, Hyerin;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.66.2-66.2
    • /
    • 2013
  • As part of the DIGIT key program, we observed GSS30-IRS1, a Class I object located in Ophiuchus (d=125 pc), with Herschel-PACS. More than 70 lines were detected in 50-200 micron band including CO, OH, H2O, and [OI]. All lines, except for [OI], were detected only at the central spaxel of $9.4^{{\prime}{\prime}}{\times}9.4^{{\prime}{\prime}}$ while the [OI] emission is extended along the NE-SW direction. One interesting feature in GSS30-IRS1 is that the continuum is extended beyond PSF, unlike line emission. It suggests that the external heating is important in GSS30-IRS1. For detail analysis of line fluxes, we apply the non-LTE LVG model, RADEX as well as simple rotational diagrams. We also use the Monte Carlo radiative transfer package, RADMC-3D to understand the heating mechanism of dust grains around GSS30-IRS1. We will discuss about heating and cooling processes associated with GSS30-IRS1.

  • PDF

Determination of the Principal Directions of Composite Helicopter Rotor Blades with Arbitrary Cross Sections

  • Oh, Taek-Yul;Choi, Myung-Jin;Yu, Yong-Seok;Chae, Kyung-Duck
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.291-297
    • /
    • 2000
  • Modern helicopter rotor blades with non-homogeneous cross sections, composed of anisotropic material, require highly sophisticated structural analysis because of various cross sectional geometry and material properties. They may be subjected by the combined axial, bending, and torsional loading, and the dynamic and static behaviors of rotor blades are seriously influenced by the structural coupling under rotating condition. To simplify the analysis procedure using one dimensional beam model, it is necessary to determine the principal coordinate of the rotor blade. In this study, a method for the determination of the principal coordinate including elastic and shear centers is presented, based upon continuum mechanics. The scheme is verified by comparing the results with confirmed experimental results.

  • PDF

Boundary Control of an Axially Moving Nonlinear Tensioned Elastic String (인장력하에서 길이방향으로 이동하는 비선형 탄성현의 경계제어)

  • 박선규;이숙재;홍금식
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.11-21
    • /
    • 2004
  • In this paper, an active vibration control of a tensioned elastic axially moving string is investigated. The dynamics of the translating string ale described by a non-linear partial differential equation coupled with an ordinary differential equation. The time varying control in the form of the right boundary transverse motions is suggested to stabilize the transverse vibration of the translating continuum. A control law based on Lyapunov's second method is derived. Exponential stability of the translating string under boundary control is verified. The effectiveness of the proposed controller is shown through the simulations.

A mixture theory based method for three-dimensional modeling of reinforced concrete members with embedded crack finite elements

  • Manzoli, O.L.;Oliver, J.;Huespe, A.E.;Diaz, G.
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.401-416
    • /
    • 2008
  • The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 3D composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.

Large deflection analysis of a fiber reinforced composite beam

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.567-576
    • /
    • 2018
  • The objective of this work is to analyze large deflections of a fiber reinforced composite cantilever beam under point loads. In the solution of the problem, finite element method is used in conjunction with two dimensional (2-D) continuum model. It is known that large deflection problems are geometrically nonlinear problems. The considered non-linear problem is solved considering the total Lagrangian approach with Newton-Raphson iteration method. In the numerical results, the effects of the volume fraction and orientation angles of the fibre on the large deflections of the composite beam are examined and discussed. Also, the difference between the geometrically linear and nonlinear analysis of fiber reinforced composite beam is investigated in detail.